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Abstract. In this article we look at limit distributions for extremes under a new nonlinear normalization
of the form exp {un(| log |x||)vnsign(log |x|)} sign(x) which we have called as exponential norming. The
corresponding limit laws are called as e-max stable laws. We study e-max stable laws, their stability
property, their max domains of attraction, comparison between p-max and e-max domains and give
examples of distribution functions in e-max domains, some of which do not belong to l-max and p-max
domains.

1. Introduction and motivation

Extreme value distributions are well known and have been studied extensively in literature on extreme
value theory. These are used as approximations to distributions of normalized partial maxima Mn =
max{X1, X2, . . . , Xn} of independent, identically distributed (iid) random variables (rvs) X1, X2, . . . , Xn

with common distribution function (df) F. The df F is said to belong to the l-max domain of attraction of
a nondegenerate df G under linear normalization, denoted by F ∈ Dl(G), if there exist norming constants
an > 0 and bn ∈ R such that

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim
n→∞

Fn(anx+ bn) = G(x), x ∈ C(G), (1)

C(G) being the set of all continuity points of G. The df G in (1) is called an extreme value df. It is well
known that there are only three types of possible nondegenerate limiting dfs G in (1), the l-max stable laws,
satisfying the stability relation Gn(Anx+Bn) = G(x), x ∈ R, n ≥ 1, for some constants An > 0, Bn ∈ R,
and these are given in Appendix A.1. Here, two dfs F and G are of the same type if F (x) = G(Ax+B) for
all x, for some constants A > 0 and B ∈ R. For necessary and sufficient conditions for F to satisfy (1) for
a given G, we refer to Galambos (1978), Resnick (1987) and Embrechts et al. (1997).

Pancheva (1984) introduced a nonlinear normalization called power normalization. The df F is said to
belong to the p-max domain of attraction of a nondegenerate df H under power normalization, denoted by
F ∈ Dp(H), if for some norming constants αn > 0 and βn > 0,

lim
n→∞

P

(∣∣∣∣Mn

αn

∣∣∣∣1/βn sign(Mn) ≤ x

)
= lim
n→∞

Fn(αn|x|βnsign(x)) = H(x), x ∈ C(H), (2)
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where sign(x) = -1, 0 or 1 according as x < 0, = 0 or > 0. The possible p-types of limiting dfs H in (2)
are the p-max stable laws satisfying the stability relation Hn(An|x|Bnsign(x)) = H(x), x ∈ R, n ≥ 1, for
some constants An > 0, Bn > 0, given in Appendix A.2. Here, two dfs F and H are of the same p-type if
F (x) = H(α|x|βsign(x)) for all x, for some constants α > 0, β > 0. Necessary and sufficient conditions for
F to satisfy (2) given in Appendix A.3 were derived in Mohan and Ravi (1993), see also Christoph and Falk
(1996) and Ravi and Mavitha (2015) for some recent work. All dfs mentioned in this article are given only
for x values for which they are in the interval (0, 1).

The following proposition gives a chain of equivalences which can be used to obtain p-max domain of
attraction from l-max domain of attraction and vice-versa. The proof of the proposition is given in the next
section. Here and elsewhere, FX denotes the df of a rv X.

Proposition 1.1. FX ∈ Dl(Fξ)⇔ Fexp(X) ∈ Dp(Fexp(ξ))⇔ F− exp(−X) ∈ Dp(F− exp(−ξ)), where Fξ denotes
an l-max stable df, Fexp(ξ) and F− exp(−ξ) denote p-max stable dfs.

It is of interest to extend this chain of equivalences from power normalization to the next possible
normalization and to see what kind of norming and limit laws arise. Though not obvious at the first
instance, this norming is found to be of the form

exp {un(| log |x||)vnsign(log |x|)} sign(x)

and we have called this as exponential norming and the corresponding limit laws as e-max stable laws.
This article looks at e-max stable laws, their stability property, max domains of attraction, comparison

between p-max and e-max domains and examples of dfs in e-max domains, some of which do not belong to
p-max domains and hence l-max domains. Section 2 gives definition of an e-max stable law, e-max domain
of attraction and obtains the e-max stable laws from p-max stable laws. Stability property satisfied by an
e-max stable law is mentioned and proved in this section. In Section 3 we obtain necessary and sufficient
conditions for a df to belong to the e-max domains of attraction of the e-max stable laws. A comparison
result between p-max and e-max domains is stated and proved in Section 4 which shows that every df
belonging to the p-max domain of attraction of a p-max stable law necessarily belongs to the e-max domain
of attraction of some e-max stable law and that the converse is not true. This shows that e-max stable laws
attract more dfs to their max domains than the p-max stable laws. In Section 5 we give some examples of
dfs in e-max domains, some of which do not belong to p-max domains and hence l-max domains. We have
given the l-max stable laws, p-max stable laws, criteria for a df to belong to p-max domains of the p-max
stable laws and comparison of l-max and p-max domains of attractions in the Appendix in Section 6 for
ease of reference.

2. Exponential norming, the e-max stable laws and stability properties

Before defining the e-max stable laws, we give the proof of Proposition 1.1 below.

Proof of Proposition 1.1. Suppose that FX ∈ Dl(Fξ) for some l-max stable df Fξ. That is, there exist
norming constants an > 0 and bn ∈ R such that lim

n→∞
FnX(anx + bn) = Fξ(x), x ∈ R. Note that the l-max

stable laws are all continuous. For x ≤ 0, Fnexp(X)(−αn(−x)βn) = Pn(eX ≤ −αn(−x)βn) = 0 with

αn = exp(bn), βn = an, and for x > 0,

lim
n→∞

Fnexp(X)(αnx
βn) = lim

n→∞
Pn(eX ≤ exp(bn)xan) = lim

n→∞
Pn(X ≤ an(log x) + bn),

= lim
n→∞

FnX(an(log x) + bn) = Fξ(log x) = P (ξ ≤ log x) = Fexp(ξ)(x),

so that Fexp(X) ∈ Dp(Fexp(ξ)).
Conversely, if Fexp(X) ∈ Dp(Fexp(ξ)) for some p-max stable df Fexp(ξ), then for some norming constants

αn > 0, βn > 0, we have

lim
n→∞

Fnexp(X)(αn | x |
βn sign(x)) = Fexp(ξ)(x), x ∈ R,

⇐⇒ lim
n→∞

Pn(eX ≤ αn | x |βn sign(x)) = P (eξ ≤ x), x ∈ R. (3)
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If x ≤ 0, then both sides in (3) are equal to 0. If x > 0, then using (3), we have

lim
n→∞

Pn(eX ≤ αnxβn) = P (eξ ≤ x) ⇐⇒ lim
n→∞

Pn(X ≤ βn(log x) + logαn) = P (ξ ≤ log x),

⇐⇒ lim
n→∞

FnX(βn(log x) + logαn) = Fξ(log x),

=⇒ lim
n→∞

FnX(any + bn) = Fξ(y), y ∈ R,

so that FX ∈ Dl(Fξ) with an = βn, bn = logαn.
Similarly, if FX ∈ Dl(Fξ) for some l-max stable df Fξ, then for some norming constants an > 0, bn ∈ R,

Fn− exp(−X)(exp(−bn)xan) = Pn(−e−X ≤ exp(−bn)xan) = 1, 0 ≤ x, and for x < 0,

lim
n→∞

Fn− exp(−X)(− exp(−bn)(−x)an) = lim
n→∞

Pn(−e−X ≤ − exp(−bn)(−x)an),

= lim
n→∞

Pn(X ≤ an(− log(−x)) + bn),

= lim
n→∞

FnX(an(− log(−x)) + bn),

= Fξ(− log(−x)) = P (ξ ≤ − log(−x)) = F− exp(−ξ)(x),

so that F− exp(−X) ∈ Dp(F− exp(−ξ)).
Conversely, if F− exp(−X) ∈ Dp(F− exp(−ξ)) for some p-max stable df F− exp(−ξ), then for some norming

constants αn > 0, βn > 0, we have

lim
n→∞

Fn− exp(−X)(αn | x |
βn sign(x)) = F− exp(−ξ)(x), x ∈ R,

⇐⇒ lim
n→∞

Pn(−e−X ≤ αn | x |βn sign(x)) = P (−e−ξ ≤ x), x ∈ R. (4)

If x ≥ 0, then both sides in (4) are equal to 1. If x < 0, then using (4), we have

lim
n→∞

Pn(−e−X ≤ −αn(−x)βn) = P (−e−ξ ≤ x)

⇐⇒ lim
n→∞

Pn(X ≤ βn(− log(−x))− logαn) = P (ξ ≤ − log(−x)),

⇐⇒ lim
n→∞

FnX(βn(− log(−x))− logαn) = Fξ(− log(−x)),

=⇒ lim
n→∞

FnX(any + bn) = Fξ(y), y ∈ R,

so that FX ∈ Dl(Fξ) with an = βn, bn = − logαn, proving the proposition.

Remark 2.1. In view of the proposition, if rv ξ has an l-max stable df, then the dfs of eξ and −e−ξ are
the p-max stable laws listed in Appendix A.2. A similar result is used below to derive the e-max stable laws
from the p-max stable laws.

We define e-max stable laws, e-max domains and e-types of dfs below. After this the e-max stable
laws are derived. In the following definition F is the common df of iid rvs X1, . . . , Xn and Mn =
max{X1, . . . , Xn}.

Definition 2.2. (i) A nondegenerate df U is said to be an e-max stable law if there exists a df F and
norming constants un > 0, vn > 0 such that

lim
n→∞

P

(
exp

{(
| log |Mn||

un

)1/vn

sign(log |Mn|)

}
sign(Mn) ≤ x

)
= lim

n→∞
P (Mn ≤ exp {(un(| log |x||)vnsign(log |x|))} sign(x))

= lim
n→∞

Fn(exp {(un(| log |x||)vnsign(log |x|))} sign(x))

= U(x), x ∈ C(U). (5)
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(ii) A df F is said to belong to the e-max domain of attraction of a nondegenerate df U under e-
normalization, denoted by F ∈ De(U), if for some norming constants un > 0 and vn > 0, (5)
holds.

(iii) Two dfs F and U are of the same e-type if F (x) = U(exp{(u| log |x||v)sign(log |x|)}sign(x)),
x ∈ R, for some constants u > 0, v > 0.

The following theorem derives the e-max stable laws from the p-max stable laws by proving a chain of
equivalences to obtain e-max domains of attraction from p-max domains of attraction.

Theorem 2.3. FX ∈ Dp(Fξ) ⇔ Fexp(X) ∈ De(Fexp(ξ)) ⇔ F− exp(−X) ∈ De(F− exp(−ξ)), where Fξ is a
p-max stable law and Fexp(ξ) and F− exp(−ξ) denote e-max stable laws.

Proof. If FX belongs to Dp(Fξ) for some p-max stable law Fξ then there exist norming constants
αn > 0, βn > 0 such that lim

n→∞
FnX(αn | x |βn sign(x)) = Fξ(x), x ∈ R. Note that the p-max stable laws

are all continuous. For x ≤ 0, Fnexp(X)(exp(un | log | x ||vn sign(log | x |))sign(x)) = Pn(eX ≤ − exp(αn |
log | x ||βn sign(log | x |))) = 0 with un = αn, vn = βn, n ≥ 1. And for x > 0,

lim
n→∞

Fnexp(X)(exp(un | log | x ||vn sign(log x))) = lim
n→∞

Pn(eX ≤ exp(αn | log x |βn sign(log x))),

= lim
n→∞

Pn(X ≤ αn | log x |βn sign(log x)),

= lim
n→∞

FnX(αn | log x |βn sign(log x)),

= Fξ(log x) = P (ξ ≤ log x) = Fexp(ξ)(x),

so that Fexp(X) ∈ De(Fexp(ξ)).
Conversely, if Fexp(X) ∈ De(Fexp(ξ)) for some e-max stable df Fexp(ξ), then for some norming constants

un > 0, vn > 0, we have

lim
n→∞

Fnexp(X)(exp(un | log | x ||vn sign(log | x |))sign(x)) = Fexp(ξ)(x), x ∈ R,

⇐⇒ lim
n→∞

Pn(eX ≤ exp(un | log | x ||vn sign(log | x |))sign(x)) = P (eξ ≤ x), x ∈ R. (6)

If x ≤ 0, then both sides in (6) are equal to 0. If x > 0, then using (6), we have

lim
n→∞

Pn(eX ≤ exp(un | log x |vn sign(log x))) = P (eξ ≤ x),

⇐⇒ lim
n→∞

Pn(X ≤ un | log x |vn sign(log x)) = P (ξ ≤ log x),

⇐⇒ lim
n→∞

FnX(αn | log x |βn sign(log x)) = Fξ(log x),

=⇒ lim
n→∞

FnX(αn | y |βn sign(y)) = Fξ(y), y ∈ R,

so that FX ∈ Dp(Fξ) with αn = un, βn = vn.
Similarly, if FX ∈ Dp(Fξ) for some p-max stable df Fξ, then for some norming constants αn > 0, βn >

0,
Fn− exp(−X)(exp(αn | log | x ||βn sign(log | x |))sign(x)) = 1, 0 ≤ x,

and for x < 0,

lim
n→∞

Fn− exp(−X)(− exp(un | log | x ||vn sign(log | x |)))

= lim
n→∞

Pn(−e−X ≤ − exp(un | log | x ||vn sign(log | x |))),

= lim
n→∞

Pn(X ≤ un | log | x ||vn sign(| log | x ||)),

= lim
n→∞

FnX(αn | log | x ||βn sign(| log | x ||)),

= Fξ(− log(−x)) = P (ξ ≤ − log(−x)) = F− exp(−ξ)(x),
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so that F− exp(−X) ∈ De(F− exp(−ξ)) with un = αn, vn = βn.
Conversely, if F− exp(−X) ∈ De(F− exp(−ξ)) for some e-max stable df F− exp(−ξ), then for some norming

constants un > 0, vn > 0, we have, for x ∈ R,

lim
n→∞

Fn− exp(−X)(exp(un | log | x ||vn sign(log | x |))sign(x)) = F− exp(−ξ)(x),

⇔ lim
n→∞

Pn(−e−X ≤ exp(un | log | x ||vn sign(log | x |))sign(x)) = P (−e−ξ ≤ x). (7)

If x ≥ 0, then both sides in (7) are equal to 1. If x < 0, then from (7), we have

lim
n→∞

Pn(−e−X ≤ − exp(un | log | x ||vn sign(log | x |))) = P (−e−ξ ≤ x),

⇐⇒ lim
n→∞

Pn(X ≤ un | log | x ||vn sign(| log | x ||)) = P (ξ ≤ − log(−x)),

⇐⇒ lim
n→∞

FnX(αn | log | x ||βn sign(| log | x ||)) = Fξ(− log(−x)),

=⇒ lim
n→∞

FnX(αn | y |βn sign(y)) = Fξ(y), y ∈ R,

so that FX ∈ Dp(Fξ) with αn = un, βn = vn. Finally, using (5), it is clear that dfs Fexp(ξ) and
F− exp(−ξ) are e-max stable laws whenever Fξ is p-max stable, proving the theorem.

Using the above theorem, we get the e-max stable laws listed below wherein the first six e-max stable
dfs have right end point r(F ) = sup{x : F (x) < 1} > 0 and the subsequent six e-max stable dfs have
r(F ) ≤ 0.

2.1. The e-max stable laws

(i) Loglog-Fréchet : U1,α(x) = exp(−(log log x)−α), x ≥ e.
(ii) Loglog-Weibull : U2,α(x) = exp(−(− log log x)α), 1 ≤ x < e.

(iii) Standard log-Fréchet : H1,1(x) = exp(−(log x)−1), x ≥ 1.

(iv) Inverse loglog-Fréchet : U3,α(x) = exp(−(− log(− log x))−α), 1/e ≤ x < 1.

(v) Inverse loglog-Weibull : U4,α(x) = exp(−(log(− log x))α), 0 ≤ x < 1/e.

(vi) Standard Uniform : H2,1(x) = x, 0 ≤ x < 1.

(vii) Negative loglog-Fréchet : U5,α(x) = exp(−(log(− log(−x)))−α), −1/e ≤ x < 0.

(viii) Negative loglog-Weibull : U6,α(x) = exp(−(− log(− log(−x)))α), −1 ≤ x < −1/e.

(ix) Standard inverse log-Fréchet : H3,1(x) = exp(−(− log(−x))−1), −1 ≤ x < 0.

(x) Negative inverse loglog-Fréchet : U7,α(x) = exp(−(− log log(−x))−α),−e ≤ x < −1.

(xi) Negative inverse loglog-Weibull : U8,α(x) = exp(−(log log(−x))α), x ≤ −e.
(xii) Standard inverse log-Weibull : H4,1(x) = −1/x, x ≤ −1.

Remark 2.4. Note that the l-max stable laws Fréchet, Weibull and Gumbel and the p-max stable laws
standard Fréchet and standard Weibull laws are not e-max stable laws but the p-max stable laws standard
log-Fréchet, standard uniform, standard inverse log-Fréchet and standard inverse log-Weibull laws are e-max
stable laws.

2.2. Stability property

The following result shows that the e-max stable laws satisfy a stability property which implies that if
X1, . . . , Xn are iid with common df as an e-max stable law, then the df of e-normalized partial maxima
Mn = max{X1, . . . , Xn} is exactly equal to the same e-max stable law for every n ≥ 1, which, in particular,
implies that an e-max stable law belongs to the e-max domain of attraction of itself.
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Theorem 2.5. If U is an e-max stable law then U satisfies the stability property:

Un(exp{(un| log |x||vn)sign(log |x|)}sign(x)) = U(x), x ∈ R, n ≥ 1,

for some constants un > 0, vn > 0.

Proof. The stability properties follow from the following observations wherein norming constants un and
vn are specified for each of the e-max stable laws.

(i) We have, for n ≥ 1, e ≤ x, with un = 1, vn = n1/α,

Un1,α(eun(log x)
vn

) =
(
e−(log log eun(log x)vn )−α

)n
, eun(log x)

vn ≥ e,

= e−n(log(un(log x)
vn ))−α = e−n(n

1/α log log x)−α

= e−(log log x)−α = U1,α(x), x ≥ e.
(ii) For n ≥ 1, 1 ≤ x < e, with un = 1, vn = n−1/α, we have

Un2,α(eun(log x)
vn

) =
(
e−(− log log eun(log x)vn )α

)n
, 1 ≤ eun(log x)

vn
< e,

= e−n(− log(un(log x)
vn ))α = e−n(−n

−1/α log log x)α

= e−(− log log x)α = U2,α(x), 1 ≤ x < e.

(iii) We have, for n ≥ 1, 1 ≤ x, with un = n, vn = 1,

Hn
1,1(eun(log x)

vn
) =

(
e−(log e

un(log x)vn )−1
)n

, eun(log x)
vn
> 1,

= e−n(un(log x)
vn )−1

= e−(log x)
−1

= H1,1(x), x ≥ 1.

(iv) We have, for n ≥ 1, e−1 ≤ x < 1, with un = 1, vn = n1/α,

Un3,α(e−un(− log x)vn ) =
(
e−(− log(− log e−un(− log x)vn ))−α

)n
, e−1 ≤ e−un(− log x)vn < 1,

= e−n(− log(un(− log x)vn ))−α

= e−(− log(− log x))−α = U3,α(x), e−1 ≤ x < 1.

(v) We have, for n ≥ 1, 0 ≤ x < e−1, with un = 1, vn = n−1/α,

Un4,α(e−un(− log x)vn ) =
(
e−(log(− log e−un(− log x)vn ))α

)n
, 0 ≤ e−un(− log x)vn < e−1,

= e−n(log(un(− log x)vn ))α

= e−(log(− log x))α = U4,α(x), 0 ≤ x < e−1.

(vi) We have, for n ≥ 1, 0 ≤ x < 1, with un = n−1, vn = 1,

Hn
2,1(e−un(− log x)vn ) =

(
e−un(− log x)vn

)n
, 0 < e−un(− log x)vn < 1,

= e−(− log x) = x = H2,1(x), 0 ≤ x < 1.

(vii) We have, for n ≥ 1, −e−1 ≤ x < 0, with un = 1, vn = n1/α,

Un5,α(−e−un(− log(−x))vn ) =
(
e−(log(− log e−un(− log(−x))vn ))−α

)n
, −e−1 ≤ −e−un(− log(−x))vn < 0

= e−n(log(un(− log(−x))vn ))−α

= e−(log(− log(−x)))−α = U5,α(x), −e−1 ≤ x < 0.

(viii) We have, for n ≥ 1, −1 ≤ x < −e−1, with un = 1, vn = n−1/α,

Un6,α(−e−un(− log(−x))vn ) =
(
e−(− log(− log e−un(− log(−x))vn ))α

)n
, −1 ≤ −e−un(− log(−x))vn < −e−1,

= e−n(− log(un(− log(−x))vn ))α

= e−(− log(− log(−x)))α = U6,α(x), −1 ≤ x < −e−1.
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(ix) We have, for n ≥ 1, −1 ≤ x < 0, with un = n, vn = 1,

Hn
3,1(−e−un(− log(−x))vn ) =

(
e−(− log e−un(− log(−x))vn )−1

)n
, −1 ≤ −e−un(− log(−x))vn < 0,

= e−n(un(− log(−x))vn )−1

= e−(− log(−x))−1

= H3,1(x), −1 ≤ x < 0.

(x) We have, for n ≥ 1, −e ≤ x < −1, with un = 1, vn = n1/α,

Un7,α(−eun(log(−x))
vn

) =
(
e−(− log log eun(log(−x)vn ))−α

)n
, −e ≤ −eun(log(−x))

vn
< −1,

= e−n(− log(un(log(−x))vn ))−α

= e−(− log log(−x))−α = U7,α(x), −e ≤ x < −1.

(xi) We have, for n ≥ 1, x ≤ −e, with un = 1, vn = n1/α,

Un8,α(−eun(log(−x))
vn

) =
(
e−(log log eun(log(−x)vn ))−α

)n
, −eun(log(−x))

vn
< −e,

= e−n(log(un(log(−x))
vn ))−α = e−(log log(−x))−α = U8,α(x), x ≤ −e.

(xii) We have, for n ≥ 1, x ≤ −1, with un = n−1, vn = 1,

Hn
4,1(−eun(log(−x))

vn
) =

(
e−un(log(−x)

vn
)n

, −eun(log(−x))
vn
< −1,

= e−nun(log(−x))
vn

= e−(log(−x)) = H4,1(x), x ≤ −1.

3. Necessary and sufficient conditions for a df to belong to De(.)

In this section, criteria are given for a df to belong to the e-max domain of attraction of e-max stable
laws. For a df F, F− is defined as F−(y) = inf{x ∈ R : F (x) > y}, y ∈ R, → is used to denote ‘tends
to’ and max{a, b} is denoted by a ∨ b for a ∈ R, b ∈ R.

Theorem 3.1. A df F ∈ De(U1,α) for some α > 0 iff (i) r(F ) = ∞ and (ii) lim
t→∞

1− F (ee
tx

)

1− F (eet)
=

x−α, x > 0. Here we can take un = 1, vn = log logF−(1− 1/n).

Proof. If F ∈ De(U1,α) then from (5), lim
n→∞

Fn(eun(log x)
vn

) = e−(log log x)−α , x ≥ e, for some norming

constants un > 0, vn > 0. Putting x = e, we get lim
n→∞

Fn(eun) = 0. Defining Y = log(a ∨X) for some

a, 0 < a < 1, we have

G(y) = P (Y ≤ y) = P (log(a ∨X) ≤ y) = F (ey), y ≥ log a, and r(G) = log r(F ). (8)

With αn = un, βn = vn, trivially, for x < 1, 0 ≤ Gn(αn|x|βn sign(x)) ≤ Gn(un) = Fn(eun)→ 0 and for
x ≥ 1,

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(eαn x
βn

) = lim
n→∞

Fn(eun (log ex)vn ),

= e−(log log ex)−α = e−(log x)
−α

= H1,α(x),

so that G ∈ Dp(H1,α). Therefore, from Theorem 6.1(i) in Appendix A.3., r(G) =∞ and lim
t→∞

1−G(etx)

1−G(et)
=

x−α and hence r(F ) =∞ and lim
t→∞

1− F (ee
tx

)

1− F (eet)
= lim
t→∞

1−G(etx)

1−G(et)
= x−α, x > 0, proving (i) and (ii).
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Conversely, if (i) and (ii) hold for some α > 0, then defining G as in (8), we have r(G) = log r(F ) =∞

and lim
t→∞

1−G(etx)

1−G(et)
= lim

t→∞

1− F (ee
tx

)

1− F (eet)
= x−α, x > 0. Hence from Theorem 6.1(i) in Appendix A.3.,

G ∈ Dp(H1,α) with αn = 1, βn = logG−(1−1/n). Therefore, with un = 1, vn = βn = log logF−(1−1/n),

Fn(e(log x)
vn

) = Gn((log x)vn) → H1,α(log x) = e−(log log x)−α = U1,α(x), x ≥ e, so that F ∈ De(U1,α),
proving the theorem.

Theorem 3.2. A df F ∈ De(U2,α), α > 0 iff (i) 1 < r(F ) <∞ and (ii) lim
t→∞

1− F (elog r(F )e−x/t)

1− F (elog r(F )e−1/t)
= xα, x > 0. Norming constants can be chosen as un = log r(F ), vn = log log r(F )− log logF−(1− 1/n).

Proof. If F ∈ De(U2,α) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(eun(log x)
vn

) = e−(− log log x)α , 1 ≤ x < e. Putting x = 1 we then get Fn(1) → 0 and putting

x = e we get Fn(eun) → 1. Defining Y = log(a ∨X), for some a, 0 < a < 1, we get G as in (8) and
with αn = un, βn = vn, for x < 0, 0 ≤ Gn(αn | x |βn sign(x)) ≤ Gn(0) = Fn(1) → 0, and for x ≥ 1,
Gn(αnx

βn) ≥ Gn(αn) = Fn(eun)→ 1. For 0 ≤ x < 1, we have

lim
n→∞

Gn(αnx
βn) = lim

n→∞
Fn(eαn x

βn
) = lim

n→∞
Fn(eun (log ex)vn ),

= exp(−(− log log ex)α) = exp(−(− log x)α),

so that G ∈ Dp(H2,α). Therefore from Theorem 6.1(ii) in Appendix A.3., 0 < r(G) < ∞ and

lim
t→∞

1−G(r(G)e−x/t)

1−G(r(G)e−1/t)
= xα. So, 1 < r(F ) <∞ and lim

t→∞

1− F (elog r(F )e−x/t)

1− F (elog r(F )e−1/t)
= lim
t→∞

1−G(r(G)e−x/t)

1−G(r(G)e−1/t)
=

xα, x > 0, proving (i) and (ii).
Conversely, if (i) and (ii) hold for some α > 0, then defining G as in (8), we have 1 < r(F ) <∞ so that

0 < r(G) <∞ and lim
t→∞

1−G(r(G)e−x/t)

1−G(r(G)e−1/t)
= lim

t→∞

1− F (elog r(F )e−x/t)

1− F (elog r(F )e−1/t)
= xα, x > 0. Then from Theorem

6.1(ii) in Appendix A.3., G ∈ Dp(H2,α) with αn = r(G), βn = log r(G)− logG−(1−1/n). Therefore, with
un = log r(F ), vn = log log r(F )− log logF−(1− 1/n), Fn(eun(log x)

vn
) = Gn(un(log x)vn)→ H2,α(log x) =

exp(−(− log log x)α) = U2,α(x), 1 ≤ x < e, so that F ∈ De(U2,α), proving the theorem.

Theorem 3.3. A df F ∈ De(H1,1) iff (i) r(F ) > 1 and (ii) lim
t↑log r(F )

1− F (ete
xf(t)

)

1− F (et)
= e−x, for some

positive valued function f. If (ii) holds for some f then
∫ log r(F )

a
1−F (ex)

x dx < ∞ for 0 < a < log r(F )

and (ii) holds with f(t) =
1

1− F (et)

∫ log r(F )

t
1−F (ex)

x dx. The norming constants here may be chosen as

un = logF−(1− 1/n), vn = f(un).

Proof. If F ∈ De(H1,1) then (5) holds for some norming constants un > 0, vn > 0, so that

lim
n→∞

Fn(eun(log x)
vn

) = e−(log x)
−1

, x > 1. Putting x = 1, we get Fn(1) → 0. Defining Y = log(a ∨X)

for some a, 0 < a < 1, we have G as in (8) and with αn = un, βn = vn, for x ≤ 0, 0 ≤ Gn(αn | x |βn
sign(x)) ≤ Gn(0) = Fn(1)→ 0. For x > 0 we have

lim
n→∞

Gn(αnx
βn) = lim

n→∞
Fn(eαn x

βn
) = lim

n→∞
Fn(eun (log ex)vn ) = e−(log e

x)−1

= e−1/x = Φ(x),

so that G ∈ Dp(Φ). Therefore, from Theorem 6.1(v) in Appendix A.3., r(G) > 0 and lim
t↑r(G)

1−G(texg(t))

1−G(t)
=

e−x, for some positive valued function g, and if it holds for some g, then
1

1−G(t)

∫ r(G)

t
1−G(x)

x dx <∞

and it holds with g(t) =
1

1−G(t)

∫ r(G)

t
1−G(x)

x dx. Re-writing these in terms of F, we get r(F ) > 1
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and lim
t↑log r(F )

1− F (ete
xf(t)

)

1− F (et)
= lim

t↑r(G)

1−G(texg(t))

1−G(t)
= e−x, for some positive valued function f and

if this holds for some function f, then
1

1− F (et)

∫ log r(F )

t
1−F (ex)

x dx < ∞, and we can take f(t) =

1

1− F (et)

∫ log r(F )

t
1−F (ex)

x dx, proving (i) and (ii).

Conversely, if (i) and (ii) hold, then defining G as in (8), r(F ) > 1 which implies that r(G) > 0

and lim
t↑r(G)

1−G(texg(t))

1−G(t)
= lim

t↑log r(F )

1− F (ete
xf(t)

)

1− F (et)
= e−x, where g and f are as above. Hence from

Theorem 6.1(v) in Appendix A.3., G ∈ Dp(Φ). Therefore, with un = logF−(1− 1/n) and vn = f(un),

Fn(eun(log x)
vn

) = Gn(un(log x)vn) → Φ(log x) = e−(log x)
−1

= H1,1(x), x > 0, so that F ∈ De(H1,1),
proving the theorem.

Theorem 3.4. A df F ∈ De(U3,α) iff (i) r(F ) = 1 and (ii) lim
t→∞

1− F (e−e
−ty

)

1− F (e−e−t)
= y−α, y > 0. Norming

constants can be chosen as un = 1, vn = − log(− logF−(1− 1/n)).

Proof. If F ∈ De(U3,α) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(e−un(− log x)vn ) = exp(−(− log(− log x))−α), 1/e ≤ x < 1. Putting x = 1/e, we get lim
n→∞

Fn(e−un)→
0 and putting x = 1, we get lim

n→∞
Fn(1) = 1. Defining Y = log(a ∨X) for some a, 0 < a < 1, we have

G as in (8) and with αn = un, βn = vn, for x ≤ −1, 0 ≤ Gn(−αn(−x)βn) ≤ Gn(−αn) = Fn(e−un)→ 0
and for x ≥ 0, Gn(αnx

βn) ≥ Gn(0) = Fn(1)→ 1. For −1 ≤ x < 0, we have

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(e−αn(−x)
βn

) = lim
n→∞

Fn(e−un (− log ex)vn ),

= e−(− log(− log ex))−α = e−(− log(−x))−α = H3,α(x),

so that G ∈ Dp(H3,α). Therefore, from Theorem 6.1(iii) in Appendix A.3., r(G) = 0 and lim
t→∞

1−G(−e−tx)

1−G(−e−t)
=

x−α. So, r(F ) = er(G) = 1 and lim
t→∞

1− F (e−e
−tx

)

1− F (e−e−t)
= lim

t→∞

1−G(−e−tx)

1−G(−e−t)
= x−α, x > 0, proving (i) and

(ii).
Conversely, if (i) and (ii) hold for some α > 0, then defining G as in (8), we have r(G) = log r(F ) = 0

and lim
t→∞

1−G(−e−tx)

1−G(−e−t)
= lim
t→∞

1− F (e−e
−tx

)

1− F (e−e−t)
= x−α, x > 0. Then from Theorem 6.1(iii) in Appendix A.3.,

G ∈ Dp(H3,α) with αn = 1, βn = − log(−G−(1− 1/n)). So, with un = 1, vn = βn = − log(− logF−(1−
1/n)), Fn(e−(− log x)vn ) = Gn((−(− log x))vn)→ H3,α(log x) = e−(− log(− log x))−α = U3,α(x), 1/e ≤ x < 1,
proving the theorem.

Theorem 3.5. A df F ∈ De(U4,α) iff (i) 0 < r(F ) < 1 and (ii) lim
t→∞

1− F (elog(r(F ))ey/t)

1− F (elog(r(F ))e1/t)
= yα, y > 0. Norming constants can be chosen as un = − log r(F ), vn = log logF−(1− 1/n)− log log r(F ).

Proof. If F ∈ De(U4,α) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(e−un(− log x)vn ) = e−(log(− log x))α , 0 ≤ x < 1/e. Putting x = 0, we get Fn(0)→ 0, and putting

x = 1/e we get Fn(e−un) → 1. Defining Y = log(a ∨X), for some a, 0 < a < r(F ), we have G as in
(8) and with αn = un, βn = vn, for x ≥ −1, 1 ≥ Gn(αn | x |βn sign(x)) ≥ Gn(−αn) = Fn(e−un) → 1
and for x < −1,

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(e−αn(−x)
βn

) = lim
n→∞

Fn(e−un (− log ex)vn ),

= e−(− log(− log ex))α = e−(− log(−x))α = H4,α(x),
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so that G ∈ Dp(H4,α). Therefore from Theorem 6.1(iv) in Appendix A.3., r(G) < 0 and lim
t→∞

1−G(r(G)ex/t)

1−G(r(G)e1/t)
=

xα. So, 0 < r(F ) < 1 and lim
t→∞

1− F (elog r(F )ex/t)

1− F (elog r(F )e1/t)
= lim

t→∞

1−G(r(G)ex/t)

1−G(r(G)e1/t)
= xα, x > 0, proving (i) and

(ii).
Conversely, if (i) and (ii) hold for some α > 0, then defining G as in (8), 0 < r(F ) < 1 which

implies that r(G) < 0 and lim
t→∞

1−G(r(G)ex/t)

1−G(r(G)e1/t)
= lim

t→∞

1− F (elog r(F )ex/t)

1− F (elog r(F )e1/t)
= xα, x > 0. Hence from

Theorem 6.1(iv) in Appendix A.3., G ∈ Dp(H4,α) with αn = −r(G), βn = logG−(1−1/n)− log r(G). So,
with un = − log r(F ), vn = log logF−(1− 1/n)− log log r(F ), Fn(e−un(− log x)vn ) = Gn(−un(− log x)vn)→
H4,α(log x) = exp(−(log(− log x))α) = U4,α(x), 0 ≤ x < 1/e, proving the theorem.

Theorem 3.6. A df F ∈ De(H2,1) iff (i) 0 < r(F ) ≤ 1 and (ii) lim
t↑log r(F )

1− F (ete
xf(t)

)

1− F (et)
= ex, for some

positive valued function f. If (ii) holds for some f then
∫ log r(F )

t
1−F (ex)

x dx < ∞ for t < log r(F )

and (ii) holds with the choice f(t) = − 1

1− F (et)

∫ log r(F )

t
1−F (ex)

x dx. The norming constants here may be

chosen as un = − logF−(1− 1/n), vn = f(−un).

Proof. If F ∈ De(H2,1) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(e−un(− log x)vn ) = x, 0 < x < 1. Putting x = 1, Fn(1) → 1. Defining Y = log(a ∨X) for some

a, 0 < a < r(F ), we have G as in (8) and with αn = un, βn = vn, for x ≥ 0, 1 ≥ Gn(αnx
βn) ≥ Gn(0) =

Fn(1)→ 1. For x < 0,

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(e−αn(−x)
βn

) = lim
n→∞

Fn(e−un (− log ex)vn ) = ex = Ψ(x),

so that G ∈ Dp(Ψ). Therefore, from Theorem 6.1(vi) in Appendix A.3., r(G) ≤ 0 and lim
t↑r(G)

1−G(texg(t))

1−G(t)
=

ex, for some positive valued function g, and if this holds for some positive valued function g then

− 1

1−G(t)

∫ r(G)

t
1−G(x)

x dx < ∞ and it holds with g(t) = − 1

1−G(t)

∫ r(G)

t
1−G(x)

x dx. Thus 0 < r(F ) ≤

1 and lim
t↑log r(F )

1− F (ete
xf(t)

)

1− F (et)
= lim

t↑r(G)

1−G(texg(t))

1−G(t)
= ex, for some positive valued function f

and if this holds for some f then − 1

1− F (et)

∫ log r(F )

t
1−F (ex)

x dx < ∞, and it holds with f(t) =

− 1

1− F (et)

∫ log r(F )

t
1−F (ex)

x dx, proving (i) and (ii).

Conversely, if (i) and (ii) hold, then defining G as in (8), 0 < r(F ) ≤ 1 which implies that r(G) ≤ 0

and lim
t↑r(G)

1−G(texg(t))

1−G(t)
= lim

t↑log r(F )

1− F (ete
xf(t)

)

1− F (et)
= ex, where g and f are as above. Then from

Theorem 6.1(vi) in Appendix A.3., G ∈ Dp(Ψ). So, with un = − logF−(1 − 1/n) and vn = f(−un),
Fn(e−un(− log x)vn ) = Gn(un(log x)vn)→ Φ(log x) = x = H2,1(x), 0 ≤ x < 1, proving the theorem.

Theorem 3.7. A df F ∈ De(U5,α) iff (i) r(F ) = 0 and (ii) lim
t→∞

1− F (−e−etx)

1− F (−e−et)
= x−α, x > 0. Norming

constants can be chosen as un = 1, vn = log(− log(−F−(1− 1/n))).

Proof. If F ∈ De(U5,α) then (5) holds for some norming constants un > 0, vn > 0, so that

lim
n→∞

Fn(−e−un(− log(−x))vn ) = exp(−(log(− log(−x)))−α), −1/e ≤ x < 0.
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Putting x = −1/e we get Fn(−e−un) → 0 and putting x = 0 we get Fn(0) → 1 so that r(F ) ≤ 0.
Defining Y = − log(−X), we have

G(y) = P (Y ≤ y) = P (− log(−X) ≤ y) = F (−e−y), y ∈ R, and r(F ) = −e−r(G). (9)

With αn = un, βn = vn, for x ≤ 1, 0 ≤ Gn(αn | x |βn sign(x)) ≤ Gn(αn) = Fn(−e−un) → 0, and for
x > 1, we have

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(−e−αn x
βn

) = lim
n→∞

Fn(−e−un (− log e−x)vn ),

= e−(log(− log e−x))−α = e−(log x)
−α

= H1,α(x),

so that G ∈ Dp(H1,α). Therefore, from Theorem 6.1(i) in Appendix A.3., r(G) =∞ and lim
t→∞

1−G(etx)

1−G(et)
=

x−α. So, r(F ) = −e−r(G) = 0 and lim
t→∞

1− F (−e−etx)

1− F (−e−et)
= lim

t→∞

1−G(etx)

1−G(et)
= x−α, x > 0, proving (i) and

(ii).

Conversely, if (i) and (ii) hold for some α > 0, then defining G as in (9), we have r(G) =

− log(−r(F )) = ∞ and lim
t→∞

1−G(etx)

1−G(et)
= lim

t→∞

1− F (−e−etx)

1− F (−e−et)
= x−α, x > 0. Then from Theo-

rem 6.1(i) in Appendix A.3., G ∈ Dp(H1,α) with αn = 1, βn = logG−(1 − 1/n). Therefore, with
un = 1, vn = log(− log(−F−(1 − 1/n))), Fn(−e−(− log(−x))vn ) = Gn((− log(−x))vn) → H1,α(− log(−x)) =

e−(log(− log(−x)))−α = U5,α(x), −1/e ≤ x < 0, so that F ∈ De(U5,α), proving the theorem.

Theorem 3.8. A df F ∈ De(U6,α) iff (i) −1 < r(F ) < 0 and (ii) lim
t→∞

1− F (−elog(−r(F ))e−x/t)

1− F (−elog(−r(F ))e−1/t)
= xα, x >

0. Norming constants can be chosen as un = − log(−r(F )), vn = log log(−r(F ))− log log(−F−(1− 1/n)).

Proof. If F ∈ De(U6,α) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(−e−un(− log(−x))vn ) = exp(−(− log(− log(−x)))α), −1 ≤ x < −1/e. Putting x = −1 we get

Fn(−1) → 0 so that r(F ) > −1 and putting x = −1/e we get Fn(−e−un) → 1 and hence r(F ) ≤ 0.
Defining Y = − log(−X) we get G as in (9) and with αn = un, βn = vn, for x ≤ 0, 0 ≤ Gn(αn |
x |βn sign(x)) ≤ Gn(0) = Fn(−1) → 0 and for x > 1, Gn(αnx

βn) > Gn(αn) = Fn(−e−un) → 1. For
0 < x ≤ 1, we have

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(−e−αn x
βn

) = lim
n→∞

Fn(−e−un (− log e−x)vn ),

= e−(− log(− log e−x))α = e−(− log x)α = H2,α(x),

so that G ∈ Dp(H2,α). Therefore, from Theorem 6.1(ii) in Appendix A.3., 0 < r(G) <∞ and

lim
t→∞

1−G(r(G)e−x/t)

1−G(r(G)e−1/t)
= xα. So, −1 < r(F ) < 0 and lim

t→∞

1− F (−elog(−r(F ))e−x/t)

1− F (−elog(−r(F ))e−1/t)
= lim
t→∞

1−G(r(G)e−x/t)

1−G(r(G)e−1/t)
=

xα, x > 0, proving (i) and (ii).

Conversely, if (i) and (ii) hold for some α > 0, defining G as in (9), −1 < r(F ) < 0 which implies

that 0 < r(G) <∞ and lim
t→∞

1−G(r(G)e−x/t)

1−G(r(G)e−1/t)
= lim

t→∞

1− F (−elog(−r(F ))e−x/t)

1− F (−elog(−r(F ))e−1/t)
= xα, x > 0. Then from

Theorem 6.1(ii) in Appendix A.3., G ∈ Dp(H2,α) with αn = r(G) and βn = log r(G)− logG−(1− 1/n).
So, with un = − log(−r(F )), vn = log log(−r(F )) − log log(−F−(1 − 1/n)), Fn(−e−un(− log(−x))vn ) =
Gn(un(− log(−x))vn)→ H2,α(− log(−x)) = exp(−(− log(− log(−x)))α) = U6,α(x), −1 ≤ x < −1/e so that
F ∈ De(U6,α), proving the theorem.
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Theorem 3.9. A df F ∈ De(H3,1) iff (i) −1 < r(F ) ≤ 0 and (ii) lim
t↑− log(−r(F ))

1− F (−e−teyf(t))
1− F (−e−t)

= e−y for some positive valued function f. If (ii) holds for some f then
∫ − log(−r(F ))

t
1−F (−e−x)

x dx <∞

for 0 < t < − log(−r(F )) and (ii) holds with the choice f(t) =
1

1− F (−e−t)
∫ − log(−r(F ))

t
1−F (−e−y)

y dy.

The norming constants here may be chosen as un = − log(−F−(1− 1/n)), vn = f(un).

Proof. If F ∈ De(H3,1) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(−e−un(− log(−x))vn ) = exp(−(− log(−x))−1), −1 < x ≤ 0. Putting x = −1, we get Fn(−1)→ 0

and putting x = 0, we get Fn(0) → 1 so that r(F ) ≤ 0. Defining Y = − log(−X) we have G as in
(9) and with αn = un, βn = vn, for x ≤ 0, 0 ≤ Gn(αn | x |βn sign(x)) ≤ Gn(0) = Fn(−1) → 0, and for
x > 0, we have

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(−e−αn x
βn

) = lim
n→∞

Fn(−e−un (− log e−x)vn ) = e−1/x = Φ(x),

so that G ∈ Dp(Φ). Therefore, from Theorem 6.1(v), r(G) > 0 and lim
t↑r(G)

1−G(texg(t))

1−G(t)
= e−x for some

positive valued function g, and if this holds for some g then
1

1−G(t)

∫ r(G)

t

1−G(x)

x
dx < ∞ and it

holds with g(t) =
1

1−G(t)

∫ r(G)

t

1−G(x)

x
dx. Re-writing in terms of F we get −1 < r(F ) ≤ 0 and

lim
t↑− log(−r(F ))

1− F (−e−texf(t))
1− F (−e−t)

= lim
t↑r(G)

1−G(texg(t))

1−G(t)
= e−x, which holds for some positive valued function

and if this holds for some positive valued function then
1

1− F (−e−t)
∫ − log(−r(F ))

t

1− F (−e−x)

x
dx < ∞,

and it holds with f(t) =
1

1− F (−e−t)
∫ − log(−r(F ))

t

1− F (−e−x)

x
dx, proving (i) and (ii).

Conversely, if (i) and (ii) hold, then defining G as in (9), −1 < r(F ) ≤ 0 which implies that r(G) > 0

and lim
t↑r(G)

1−G(texg(t))

1−G(t)
= lim

t↑− log(−r(F ))

1− F (−e−texf(t))
1− F (−e−t)

= e−x, where g and f are as above. Hence

from Theorem 6.1(v) in Appendix A.3., G ∈ Dp(Φ). So, with un = − log(−F−(1 − 1/n)), vn = f(un),
Fn(−e−un(− log(−x))vn ) = Gn(un(− log(−x))vn) → Φ(− log(−x)) = exp(−(− log(−x))−1) = H3,1(x), −1 ≤
x < 0, so that F ∈ De(H3,1), proving the theorem.

Theorem 3.10. A df F ∈ De(U7,α) iff (i) r(F ) = −1 and (ii) lim
t→∞

1− F (−ee−tx)

1− F (−ee−t)
= x−α, x > 0.

Norming constants can be chosen as un = 1, vn = − log log(−F−(1− 1/n)).

Proof. If F ∈ De(U7,α) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(−eun(log(−x))vn ) = exp(−(− log log(−x))−α), −e ≤ x < −1. Putting x = −e we get Fn(−eun)→
0 and putting x = −1 we get Fn(−1) → 1 so that r(F ) ≤ −1. Defining Y = − log(−X) we have G
as in (9) and with αn = un, βn = vn, for x ≤ 1, 0 ≤ Gn(−αn(−x)βn) ≤ Gn(−αn) = Fn(−eun)→ 0 and
for x > 0, Gn(αnx

βn) > Gn(0) = Fn(−1)→ 1. For −1 ≤ x < 0, we have

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(−eαn(−x)
βn

) = lim
n→∞

Fn(−eun (log e−x)vn ),

= e−(− log log e−x))−α = e−(− log(−x))−α = H3,α(x),
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so that G ∈ Dp(H3,α). Therefore, from Theorem 6.1(iii) in Appendix A.3., r(G) = 0 and lim
t→∞

1−G(−e−tx)

1−G(−e−t)
=

x−α. So, r(F ) = −e−r(G) = −1 and lim
t→∞

1− F (−ee−tx)

1− F (−ee−t)
= lim

t→∞

1−G(−e−tx)

1−G(−e−t)
= x−α, x > 0, proving (i)

and (ii).
Conversely, if (i) and (ii) hold for some α > 0, then defining G as in (9) we have r(G) =

− log(−r(F )) = 0 and lim
t→∞

1−G(−e−tx)

1−G(−e−t)
= lim

t→∞

1− F (−ee−tx)

1− F (−ee−t)
= x−α, x > 0. Then from Theorem

6.1(iii) in Appendix A.3., G ∈ Dp(H3,α) with αn = 1 and βn = − log(−G−(1− 1/n)). So, with un = 1
and vn = βn = − log log(−F−(1 − 1/n)), Fn(−e(log(−x))vn ) = Gn((− log(−x))vn) → H3,α(− log(−x)) =
exp(−(− log log(−x))−α) = U7,α(x), −e ≤ x < −1, proving the theorem.

Theorem 3.11. A df F ∈ De(U8,α) iff (i) r(F ) < −1 and (ii) lim
t→∞

1− F (e− log(−r(F ))ex/t)

1− F (−elog(−r(F ))e1/t)
= xα, x > 0.

Norming constants can be chosen as un = log(−r(F )), vn = log log(−F−(1− 1/n))− log log(−r(F )).

Proof. If F ∈ De(U8,α) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(−eun(log(−x))vn ) = exp(−(log log(−x))α), x ≤ −e. Putting x = −e, we get Fn(−eun)→ 1 and

for x ≥ 0, by (5), Fn(eun(log x)
vn

) → 1, so that r(F ) ≤ 0. Defining Y = − log(−X) we have G as in
(9) and with αn = un, βn = vn, for −1 < x < 0, 1 ≥ Gn(−αn(−x)βn) ≥ Gn(−αn) = Fn(−eun) → 1,
and for x ≤ −1, we have

lim
n→∞

Gn(αn|x|βn sign(x)) = lim
n→∞

Fn(−eαn(−x)
βn

) = lim
n→∞

Fn(−eun (log e−x)vn ),

= exp(−(log log e−x))α = H4,α(x),

so that G ∈ Dp(H4,α). Therefore, from Theorem 6.1(iv) in Appendix A.3., r(G) < 0 and lim
t→∞

1−G(r(G)ex/t)

1−G(r(G)e1/t)
=

xα. Thus r(F ) < −1 and lim
t→∞

1− F (e− log(−r(F ))ex/t)

1− F (−elog(−r(F ))e1/t)
= lim

t→∞

1−G(r(G)ex/t)

1−G(r(G)e1/t)
= xα, x > 0, proving (i)

and (ii).
Conversely, if (i) and (ii) hold for some α > 0, then defining G as in (9), r(F ) < −1 which

implies that r(G) < 0 and lim
t→∞

1−G(r(G)ex/t)

1−G(r(G)e1/t)
= lim

t→∞

1− F (−elog(−r(F ))ex/t)

1− F (−elog(−r(F ))e1/t)
= xα, x > 0. Then

from Theorem 6.1(iv) in Appendix A.3., G ∈ Dp(H4,α) with αn = −r(G) and βn = logG−(1 − 1/n) −
log r(G). So, with un = log(−r(F )), vn = log log(−F−(1− 1/n))− log log(−r(F )), Fn(−eun(log(−x))vn ) =
Gn(un(− log(−x))vn) → H4,α(− log(−x)) = exp(−(log log(−x)))α) = U8,α(x), x ≤ −e, proving the
theorem.

Theorem 3.12. A df F ∈ De(H4,1) iff (i) r(F ) ≤ −1 and (ii) lim
t↑− log(−r(F ))

1− F (−e−teyf(t))
1− F (−e−t)

= ey,

for some positive valued function f. If (ii) holds for some f then
∫ − log(−r(F ))

t
1−F (−e−x)

x dx < ∞ for

0 < t < − log(−r(F )) and (ii) holds with f(t) = − 1

1− F (−e−t)
∫ − log(−r(F ))

t
1−F (−e−y)

y dy. Norming

constants may be chosen as un = − log(−F−(1− 1/n)), vn = f(−un).

Proof. If F ∈ De(H4,1) then (5) holds for some norming constants un > 0, vn > 0, so that
lim
n→∞

Fn(−eun(log(−x))vn ) = −1/x, x ≤ −1. Putting x = −1, we get Fn(−1) → 1 so that r(F ) ≤ −1.

Defining Y = − log(−X) we have G as in (9) and with αn = un, βn = vn, for x ≥ 0,
1 ≥ Gn(αnx

βn) ≥ Gn(0) = Fn(−1) → 1. For x < 0, we have limn→∞Gn(αn|x|βn sign(x)) =

limn→∞ Fn(−eαn(−x)βn ) = limn→∞ Fn(−eun (log e−x)vn ) = ex = Ψ(x), so that G ∈ Dp(Ψ). Therefore,
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from Theorem 6.1(vi) in Appendix A.3., r(G) ≤ 0 and lim
t↑r(G)

1−G(texg(t))

1−G(t)
= ex for some positive valued

function g, and if this holds for some function g then − 1

1−G(t)

∫ r(G)

t
1−G(x)

x dx < ∞, and it holds

with the choice g(t) = − 1

1−G(t)

∫ r(G)

t
1−G(x)

x dx. Re-writing in terms of F we get r(F ) ≤ −1 and

lim
t↑(− log(−r(F )))

1− F (−e−texf(t))
1− F (−e−t)

= lim
t↑r(G)

1−G(texg(t))

1−G(t)
= ex, for some positive valued function f and if

this holds for some f then − 1

1− F (−e−t)
∫ − log(−r(F ))

t
1−F (−e−x)

x dx < ∞, and it holds with the choice

f(t) = − 1

1− F (−e−t)
∫ − log(−r(F ))

t
1−F (−e−x)

x dx, proving (i) and (ii).

Conversely, if (i) and (ii) hold, then defining G as in (9), r(F ) ≤ −1 which implies that r(G) ≤ 0

and lim
t↑r(G)

1−G(texg(t))

1−G(t)
= lim

t↑(− log(−r(F )))

1− F (−e−texf(t))
1− F (−e−t)

= ex, with g and f as above. Then from

Theorem 6.1(vi) in Appendix A.3. G ∈ Dp(Ψ). So, with un = − log(−F−(1 − 1/n)), vn = f(−un),
Fn(−eun(log(−x))vn ) = Gn(un(− log(−x))vn) → Φ(− log(−x)) = −1/x = H4,1(x), x ≤ −1, proving the
theorem.

4. Comparison between p-max and e-max domains

The result below compares Dp(.) and De(.) and shows that every df in a Dp(.) necessarily belongs
to some De(.) and that the converse is not always true. So, e-max stable laws attract more dfs than
the p-max stable laws. Proofs of results in the previous section and Theorem 6.2 in Appendix A.4. are
extensively used in the proof below and the proof is different from the one given in Mohan and Ravi (1993)
for Theorem 6.2 in Appendix A.4. Two dfs F and G are said to be tail equivalent if r(F ) = r(G) and

lim
t→r(F )

1− F (t)

1−G(t)
= A, for some constant A > 0, and in such a case, if one belongs to a max domain of

some df, then the other df also belongs to the same max domain with the same kind of normalization, see
for example, Resnick (1987). We use this result in the proofs below.

Theorem 4.1. Let F be a df.

(a)
(i) F ∈ Dp(H1,α)
(ii) F ∈ Dp(Φ), r(F ) =∞

}
=⇒ F ∈ De(H1,1), r(F ) =∞.

(b) F ∈ Dp(Φ), 1 < r(F ) <∞ ⇐⇒ F ∈ De(H1,1), 1 < r(F ) <∞.

(c)
(i) F ∈ Dp(H2,α), r(F ) = 1
(ii) F ∈ Dp(Φ), r(F ) = 1

}
=⇒ F ∈ De(H2,1), r(F ) = 1.

(d) F ∈ Dp(Φ), 0 < r(F ) < 1 ⇐⇒ F ∈ De(H2,1), 0 < r(F ) < 1.

(e)
(i) F ∈ Dp(H3,α)
(ii) F ∈ Dp(Ψ), r(F ) = 0

}
=⇒ F ∈ De(H3,1), r(F ) = 0.

(f) F ∈ Dp(Ψ), −1 < r(F ) < 0 ⇐⇒ F ∈ De(H3,1), −1 < r(F ) < 0.

(g)
(i) F ∈ Dp(H4,α), r(F ) = −1
(ii) F ∈ Dp(Ψ), r(F ) = −1

}
=⇒ F ∈ De(H4,1), r(F ) = −1.

(h) F ∈ Dp(Ψ), r(F ) < −1 ⇐⇒ F ∈ De(H4,1), r(F ) < −1.

(i) F ∈ Dp(H2,α), 1 < r(F ) <∞ ⇐⇒ F ∈ De(U2,α), 1 < r(F ) <∞.
(j) F ∈ Dp(H2,α), r(F ) < 1 ⇐⇒ F ∈ De(U4,α), 0 < r(F ) < 1.

(k) F ∈ Dp(H4,α), −1 < r(F ) < 0 ⇐⇒ F ∈ De(U6,α), −1 < r(F ) < 0.

(l) F ∈ Dp(H4,α), r(F ) < −1 ⇐⇒ F ∈ De(U8,α), r(F ) < −1.
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Remark 4.2. Note that De(U1,α)∪De(U3,α)∪De(U5,α)∪De(U7,α) contain dfs which do not belong to any
of the Dp(·)′s.

Proof of (a)(i): If X ∼ F ∈ Dp(H1,α) then by Theorem 6.1(i) in Appendix A.3., r(F ) = ∞ and

Fn(xβn)→ e−(log x)
−α
, x > 1, for some βn > 0. Defining Y = log(a∨X) for some a, 0 < a < 1, we have

G as in (8) with r(G) = log r(F ) =∞ and Gn(any + bn) = Fn(eany+bn) = Fn(ebn(ey)an)→ H1,α(ey) =
Φα(y), y > 0, so that G ∈ Dl(Φα). Hence, from Theorem 6.2(i) in Appendix A.4., G ∈ Dp(Φ). Therefore,
as in the proof of converse part of Theorem 3.3, the df of eY = a ∨ X belongs to De(H1,1), and since

lim
t→∞

P (a ∨X > t)

P (X > t)
= 1, trivially a∨X and X are tail equivalent and we get F ∈ De(H1,1) with norming

constants un = logF−(1− 1/n), vn = h(un), where h(t) =
1

1− F (et)

∫ log r(F )

t
1−F (es)

s ds, completing the

proof.
Proof of (a)(ii): If X ∼ F ∈ Dp(Φ) with r(F ) = ∞ then Fn(αnx

βn) → e−1/x, x > 0 for
some constants αn > 0, βn > 0. Defining G as in (8), lim

n→∞
Gn(βny + logαn) = lim

n→∞
Fn(αn(ey)βn) =

Φ(ey) = Λ(y), y ∈ R, and hence G ∈ Dl(Λ) with r(G) = log(r(F )) = ∞. So, by Theorem 6.2(ii) in
Appendix A.4., G ∈ Dp(Φ) and as in the proof of converse part of Theorem 3.3, the df of eY = (a ∨X)
belongs to De(H1,1) which implies that F ∈ De(H1,1) with un = logF−(1 − 1/n), vn = h(un), where

h(t) =
1

1− F (et)

∫ log r(F )

t
1−F (es)

s ds, proving (a)(ii).

Proof of (b): The proof of the necessity part of (b) is similar to that of (a)(ii) above and is omitted.

If X ∼ F ∈ De(H1,1) with 1 < r(F ) < ∞ then Fn(eun(log x)
vn

) → e−(log x)
−1

, x > 1, for some
constants un > 0, vn > 0. Hence for some a, 0 < a < 1, Y = log(a ∨ X) ∼ G with G as in (8) and
Gn(uny

vn) = Fn(euny
vn

) = Fn(eun(log e
y)vn ) → e−1/y = Φ(y), y > 0. So G ∈ Dp(Φ), 0 < r(G) < ∞.

Therefore, from Theorem 6.2(iii) in Appendix A.4., G ∈ Dl(Λ), 0 < r(G) < ∞. Hence from Proposition
1.1, the df of eY = a∨X belongs to Dp(Φ), 1 < r(F ) <∞, and since a∨X and X are tail equivalent,
the df of X belongs to Dp(Φ), proving (b).

Proof of (c)(i): If X ∼ F ∈ Dp(H2,α) with r(F ) = 1, then Fn(xβn) → e−(− log x)α , 0 < x < 1,
for some constants βn > 0. Defining G as in (8), we have Gn(βny) = Fn((ey)βn) → H2,α(ey) =
Ψα(y), y < 0, so that G ∈ Dl(Ψα) with r(G) = log(r(F )) = 0. Hence from Theorem 6.2(vi) in Appendix
A.4., G ∈ Dp(Ψ). So, as in the converse part of the proof of Theorem 3.6, the df of eY = (a ∨ X)
belongs to De(H2,1) and since a ∨ X and X are tail equivalent, we have F ∈ De(H2,1) with

un = − logF−(1− 1/n), vn = h(−un), where h(t) = − 1

1− F (et)

∫ log r(F )

t
1−F (es)

s ds, proving (c)(i).

Proof of (c)(ii): As in the proof of (a) (ii) above, if X ∼ F ∈ Dp(Φ) with r(F ) = 1, then
Fn(αnx

βn) → e−1/x, x > 0, for some constants αn > 0, βn > 0. Defining G as in (8), we have
Gn(βny + logαn) = Fn(αn(ey)βn) → Φ(ey) = Λ(y), y ∈ R, and hence G ∈ Dl(Λ) with r(G) =
log(r(F )) = 0. So, from Theorem 6.2(v) in Appendix A.4., G ∈ Dp(Ψ) so that the df of eY = (a ∨X)
belongs to De(H2,1) as in the proof of converse part of Theorem 3.6, which implies that F ∈ De(H2,1)

with un = − logF−(1− 1/n), vn = h(−un), where h(t) = − 1

1− F (et)

∫ log r(F )

t
1−F (es)

s ds, proving (c)(ii).

Proof of (d): The proof of the necessity part of (d) is similar to that of (c)(ii) above and is omitted.
Now, if X ∼ F ∈ De(H2,1), 0 < r(F ) < 1, then Fn(e−un(− log x)vn ) → x, 0 ≤ x < 1, for

some norming constants un > 0, vn > 0. Defining G as in (8) for some a, 0 < a < r(F ), we have
Gn(−un(−y)vn) = Fn(e−un(−y)

vn
) = Fn(e−un(− log ey)vn ) → e−(− log ey) = ey = Ψ(y), y < 0, so that

G ∈ Dp(Ψ), with r(G) = log(r(F )) < 0. Hence from Theorem 6.2(iv) in Appendix A.4., G ∈ Dl(Λ).
From Proposition 1.1, this implies that the df of eY = a ∨X belongs to Dp(Φ), 0 < r(F ) < 1, proving
(d).

Proof of (e)(i): If X ∼ F ∈ Dp(H3,α) then r(F ) = 0 and Fn(−αn(−x)βn) → e−(− log(−x))−α ,
−1 < x < 0, for some norming constants αn > 0, βn > 0. Defining G as in (9), we have Gn(βny−logαn) =

Fn(−e−βnyelogαn) = Fn(−αn(e−y)βn) → e−(− log(−(−e−y)))α , −1 < −e−y < 0, = Φα(y), y > 0. So
G ∈ Dl(Φα) with r(G) = − log(−r(F )) =∞. Hence from Theorem 6.2(i) in Appendix A.4., G ∈ Dp(Φ)
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and as in the proof of converse part of Theorem 3.9, the df of X = −e−Y belongs to De(H3,1), proving
(e)(i).

Proof of (e)(ii): If X ∼ F ∈ Dp(Ψ) with r(F ) = 0 then Fn(−αn(−x)βn) → ex, x < 0, for
some norming constants αn > 0, βn > 0. Defining G as in (9), Gn(βny − logαn) = Fn(−e−βnyelogαn)

= Fn(−αn(e−y)βn) → e−e
−y

= Λ(y), y ∈ R. So, G ∈ Dl(Λ) with r(G) = − log(−r(F )) = ∞. Hence
from Theorem 6.2(ii) in Appendix A.4., F ∈ Dp(Φ) so that, as in the proof of converse part of Theorem
3.9, the df of −e−Y = X belongs to De(H3,1), proving (e)(ii).

Proof of (f): If X ∼ F ∈ Dp(Ψ) with −1 < r(F ) < 0 then proceeding as in the proof of e(ii), we have
G ∈ Dl(Λ) with 0 < r(G) < ∞ and hence from Theorem 6.2(iii) in Appendix A.4., G ∈ Dp(Φ) so that
the df of −e−Y = X belongs to De(H3,1).

If X ∼ F ∈ De(H3,1) with −1 < r(F ) < 0 then Fn(−e−un(− log(−x))vn ) → e−(− log(−x)) =
H3,1(x), −1 ≤ x ≤ 0, for some norming constants un > 0, vn > 0. Defining G as in (9), Gn(uny

vn) =

Fn(−e−un(y)vn ) = Fn(−e−un(− log |−e−y|)vn )→ e−(− log e−y)−1

= e−1/y = Φ(y), y > 0, so that G ∈ Dp(Φ)
with r(G) = − log(−r(F )), 0 < r(G) <∞. Hence from Theorem 6.2(iii) in Appendix A.4., G ∈ Dl(Λ), 0 <
r(G) <∞, and so from Proposition 1.1, the df of −e−Y = X belongs to Dp(Ψ), −1 < r(F ) < 0, proving
(f).

Proof of (g)(i): If X ∼ F ∈ Dp(H4,α) with r(F ) = −1 then Fn(−αn(−x)βn) → e−(log(−x))
α

, x <
−1, for some norming constants αn > 0, βn > 0. Defining G as in (9), we have Gn(βny −
logαn) = Fn(−e−βnyelogαn) = Fn(−αn(e−y)βα) → e−(log(e

−y))α , −e−y < −1, = Ψα(y), y < 0. So,
G ∈ Dl(Ψα), r(G) = − log(−r(F )) = 0. Hence from Theorem 6.2(vi) in Appendix A.4., G ∈ Dp(Ψ) so
that as in the proof of converse part of Theorem 3.12, the df of −e−Y = X belongs to De(H4,1), proving
(g)(i).

Proof of (g)(ii) and direct part of (h): If X ∼ F ∈ Dp(Ψ), r(F ) ≤ −1, then proceeding as in the proof
of (e)(ii), G ∈ Dl(Λ), r(G) ≤ 0 and hence from Theorem 6.2(iv) and (v) in Appendix A.4., G ∈ Dp(Ψ).
So, from the proof of converse part of Theorem 3.12, the df of −e−Y = X belongs to De(H4,1), proving
(g)(ii) and the direct part of (h).

Proof of converse part of (h): If X ∼ F ∈ De(H4,1) with r(F ) < −1 then Fn(−eun(log |x|)vn ) →
e− log(−x) = H4,1(x), x < −1, for some norming constants un > 0, vn > 0. Defining G as in (9),

Gn(−un(−y)vn) = Fn(−eun(−y)vn ) = Fn(−eun(log |−e−y|)vn )→ e− log e−y = ey = Ψ(y), y < 0, so that G ∈
Dp(Ψ), r(G) = − log(−r(F )) < 0. Hence, from Theorem 6.2(iv) in Appendix A.4., G ∈ Dl(Λ), r(G) < 0
and so by Proposition 1.1, the df of −e−Y = X belongs to Dp(Ψ), r(F ) < −1, proving the converse part
of (h).

Proof of (i): If X ∼ F ∈ Dp(H2,α), r(F ) > 1, then proceeding as in the proof of (c)(i), G ∈ Dl(Ψα)
with r(G) > 0 and hence from Theorem 6.2(vii) in Appendix A.4., G ∈ Dp(H2,α). So, as in the proof of
converse part of Theorem 3.2, the df of eY = (a ∨X) and hence that of X, belongs to De(U2,α).

Conversely, if X ∼ F ∈ De(U2,α) with 1 < r(F ) < ∞ then Fn(eun(log x)
vn

) → e−(− log log x)α , 1 ≤
x < e, for some norming constants un > 0, vn > 0. Defining G as in (8) for some a, 0 < a < 1,
Gn(unx

vn) = Fn(eunx
vn

) = Fn(eun(log e
x)vn ) → H2,α(x), 0 ≤ x < 1. Hence G ∈ Dp(H2,α). From

Theorem 6.2(vii) in Appendix A.4., G ∈ Dl(Ψα) with r(G) = log r(F ) > 0 which implies that the df of
eY = a ∨X belongs to Dp(H2,α) by Proposition 1.1. Since a ∨X and X are tail equivalent, we have
F ∈ Dp(H2,α), r(F ) > 1, proving (i).

Proof of (j): If X ∼ F ∈ Dp(H2,α) with r(F ) < 1, then proceeding as in the proof of (c)(i),
G ∈ Dl(Ψα) with r(G) < 0 and hence from Theorem 6.2(viii) in Appendix A.4., G ∈ Dp(H4,α). So, as
in the proof of converse part of Theorem 3.5, the df of eY = (a ∨ X) and hence that of X, belongs to
De(U4,α).

Conversely, if X ∼ F ∈ De(U4,α) with 0 < r(F ) < 1 then Fn(eun| log x|
vnsign(log x))→ e−(log | log x|)

α

, 0 <
x < 1/e, for some norming constants un > 0, vn > 0. Defining G as in (8) for some a, 0 < a < r(F ),
Gn(−un(−x)vn) = Fn(e−un(−x)

vn
) = Fn(e−un(− log ex)vn ) → H4,α(x), x < −1, so that G ∈ Dp(H4,α).

Hence, from Theorem 6.2(viii) in Appendix A.4., G ∈ Dl(Ψα) with r(G) = log r(F ) < 0 so that the df of
eY = a ∨X and hence that of X belongs to Dp(H2,α) with r(F ) < 1, proving (j).

Proof of (k): If X ∼ F ∈ Dp(H4,α) with −1 < r(F ) < 0, then proceeding as in the proof of g(i), we
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have G ∈ Dl(Ψα) with 0 < r(G) <∞. Hence, from Theorem 6.2 (vii) in Appendix A.4., G ∈ Dp(H2,α)
so that, as in the proof of converse part of Theorem 3.8, the df of −e−Y = X belongs to De(U6,α).

If X ∼ F ∈ De(U6,α) with −1 < r(F ) < 0, then Fn(−eun| log |x||vnsign(log |x|)) → e−(− log(− log(−x)))α ,
−1 ≤ x < −1/e, for some norming constants un > 0, vn > 0. Defining G as in (9), Gn(unx

vn) =

Fn(−e−unxvn ) = Fn(−e−un(− log(−(−e−x)))vn ) → e−(− log x)α = H2,α(x), 0 < x < 1, so that G ∈
Dp(H2,α), r(G) = − log(−r(F )), 0 < r(G) < ∞. Hence, from Theorem 6.2(vii) in Appendix A.4., G ∈
Dl(Ψα), r(G) > 0, and from Proposition 1.1, the df of X = −e−Y belongs to Dp(H4,α), −1 < r(F ) < 0,
proving (k).

Proof of (l): If X ∼ F ∈ Dp(H4,α) with r(F ) < −1 then proceeding as in the proof of g(i), we have
G ∈ Dl(Ψα) with r(G) < 0 and hence from Theorem 6.2(viii) in Appendix A.4., G ∈ Dp(H4,α). So, as in
the proof of Theorem 3.11, the df of −e−Y = X belongs to De(U8,α).

If X ∼ F ∈ De(U8,α) with r(F ) < −1 then Fn(−eun(log(−x))vn )→ e−(log(log(−x)))
α

, x < −e, for some
norming constants un > 0, vn > 0. Defining G as in (9), Gn(−un(−y)vn) = Fn(−eun(−y)vn ) =

Fn(−eun(log(−(−e−y)))vn ) → e−(log(−y))
vn

= H4,α(y), y < −1, and G ∈ Dp(H4,α) with r(G) =
− log(−r(F )) < 0. From the Theorem 6.2(viii) in Appendix A.4., G ∈ Dl(Ψα), r(G) < 0, and hence
from Proposition 1.1, the df of −e−Y = X belongs to Dp(H4,α), r(F ) < −1, proving (l) and the theorem.

5. Examples

The following examples give dfs belonging to the max domains of attraction of the e-max stable laws
and these can be verified directly by using (5). Note that Dl(.) ⊂ Dp(.) ⊂ De(.). In the discussion below,
α = 1.

(i) F1(x) = 1− (log log x)−1, x ≥ ee, belongs to De(U1,α) with un = 1 and vn = n. But F 6∈ Dp(·), see,
Mohan and Ravi (1993).

(ii) F2(x) = 1 − (− log(− log x))−1, e−1/e < x < 1, belongs to De(U3,α) with un = 1 and vn = n. But
F2 6∈ Dp(·), as if at all F2 belongs to any of these domains then F2 ∈ Dl(Ψ)∪Dl(Λ)∪Dp(H2,α)∪Dp(Φ), as
r(F2) = 1. But, from Theorem 2.1.2 of Galambos (1978), F2 6∈ Dl(Ψ) and hence from Theorem 6.2(vii)
in Appendix A.4., F2 6∈ Dp(H2,α). Further from Theorem 2.1.3 of Galambos (1978), F2 6∈ Dl(Λ), and
hence from Theorem 6.2(iii) in Appendix A.4., F2 6∈ Dp(Φ).

(iii) F3(x) = 1 − (log(− log(−x))−1, −e−e < x < 0, belongs to De(U5,α) with un = 1 and vn = n. But
F3 6∈ Dp(·), as if at all F3 belongs to any of these domains then F3 ∈ Dl(Ψ)∪Dl(Λ)∪Dp(H3,α)∪Dp(Ψ),
as r(F3) = 0. But, from Theorem 2.1.2 of Galambos (1978), F3 6∈ Dl(Ψ) and from Theorem 6.1(iii)
in Appendix A.3., F3 6∈ Dp(H3,α) and also from Theorem 2.1.3 of Galambos (1978), F3 6∈ Dl(Λ), and
hence from Theorem 6.2(iv) in Appendix A.4., F3 6∈ Dp(Ψ).

(iv) F4(x) = 1 − (− log log(−x))−1, −e1/e < x < −1, belongs to De(U7,α) with un = 1 and vn = n. But
F4 6∈ Dp(·), as if at all F4 belongs to any of these domains then F4 ∈ Dl(Ψ)∪Dl(Λ)∪Dp(H4,α)∪Dp(Ψ),
as r(F4) = −1. But, from Theorem 2.1.2 of Galambos (1978), F2 6∈ Dl(Ψ) and hence from Theorem
6.2(viii) in Appendix A.4., F2 6∈ Dp(H4,α) and also from Theorem 2.1.3 of Galambos (1978), F2 6∈
Dl(Λ), and hence from Theorem 6.2(iv) in Appendix A.4., F2 6∈ Dp(Ψ).

(v) F5(x) = 1 − e−(log log x)2 , x ≥ e, belongs to De(H1,1), with un = e
√
logn and vn = (2

√
log n)−1.

Note that F5 6∈ Dp(H1,α) ∪ Dp(Φ). For, if F5(x) ∈ Dp(H1,α) then from the proof of a(i) of Theorem

4.1, G5(y) = F5(ey) = 1 − e−(log x)
2

, x ≥ 1 ∈ Dl(Φα), a contradiction established in Mohan and
Ravi (1993). Also, if F5 ∈ Dp(Φ) then from the proof of c(ii) of Theorem 4.1, G5 ∈ Dl(Λ), again a
contradiction established in Mohan and Ravi (1993).

(vi) F6(x) = 1 − e−(− log(− log x))2 , 1/e < x < 1, belongs to De(H2,1), with un = e
√

log(1/n) and vn =

(2
√

log(1/n))−1. Note that F6 6∈ Dp(H2,α)∪Dp(Φ). For, if F6 ∈ Dp(H2,α) then from the proof of c(i)

of Theorem 4.1, G6(y) = F6(ey) = 1− e−(− log(−x))2 , −1 < x < 0 ∈ Dl(Ψα), a contradiction which is
easy to establish. Also, if F6 ∈ Dp(Φ), then from the proof of c(ii) of Theorem 4.1, G6 ∈ Dl(Λ), again
a contradiction which is easy to establish.
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(vii) F7(x) = 1 − e−(log(− log(−x))2 , −1/e < x < 0, belongs to De(H3,1), with un = e
√
logn and vn =

(2
√

log n)−1. Note that F7 6∈ Dp(H3,α)∪Dp(Ψ). For, if F7(x) ∈ Dp(H3,α), then from the proof of e(i)

of Theorem 4.1, G7(y) = F7(−e−y) = 1 − e−(log x)2 , x ≥ 1,∈ Dl(Ψα), a contradiction established in
Mohan and Ravi (1993). Also, if F7 ∈ Dp(Ψ), then from the proof of e(ii) of Theorem 4.1, G7 ∈ Dl(Λ),
a contradiction established in Mohan and Ravi (1993).

(viii) F8(x) = 1 − e−(− log log(−x))2 , −e < x < −1, belongs to De(H4,1), with un = e
√

log(1/n) and vn =

(2
√

log(1/n))−1. Note that F8 6∈ Dp(H4,α)∪Dp(Ψ). For, if F8 ∈ Dp(H4,α), then from the proof of g(i)

of Theorem 4.1, G8(y) = F8(−e−y) = 1− e−(− log(−x))2 , −1 < x < 0,∈ Dl(Ψα), a contradiction which
is easy to establish. Also, if F8 ∈ Dp(Ψ), then from the proof of g(ii) of Theorem 4.1, G8 ∈ Dl(Λ), a
contradiction which is easy to establish.

(ix) The following examples pertain to some standard dfs and can be deduced using Theorem 4.1 and
Theorem 6.2 in Appendix A.4.

(a) The standard normal df F ∈ Dl(Λ) with an =
√

2 log n − log log n+ log 4π

2
√

2 log n
, bn = (

√
2 log n)−1

so that (1) holds; F ∈ Dp(Φ) with αn = bn, βn =
an
bn

so that (2) holds and F ∈ De(H1,1) with

un = βn, vn = αn so that (5) holds.

(b) The uniform df over (0,1) F ∈ Dl(Ψα) with an = 1/n, bn = 1 so that (1) holds; F ∈ Dp(H2,α)

with αn = bn, βn =
an
bn

so that (2) holds and F ∈ De(H2,1) with un = βn, vn = αn so that (5)

holds.

(c) The standard exponential df F ∈ Dl(Λ) with an = 1, bn = log n so that (1) holds; F ∈ Dp(Φ)

with αn = bn, βn =
an
bn

so that (2) holds and F ∈ De(H1,1) with un = βn, vn = αn so that (5)

holds.

(d) The Cauchy df F ∈ Dl(Φα) with an =
n

π
, bn = 0 so that (1) holds; F ∈ Dp(Φ) with αn = an,

βn =
1

α
so that (2) holds and F ∈ De(H1,1) with un = βn, vn = αn so that (5) holds.

(e) The lognormal df F ∈ Dl(Λ) with an =
bn√

2 log n
, bn = exp(1 +

√
2 log n− log 4π + log log n

2
√

2 log n
) so

that (1) holds; F ∈ Dp(Φ) with αn = bn, βn =
an
bn

so that (2) holds and F ∈ De(H1,1) with

un = βn, vn = αn so that (5) holds.

(f) The Gamma (α, β) df F ∈ Dl(Λ) with an = 1/β, bn =
1

β
(log n + (α − 1) log log n − log Γ(α)) so

that (1) holds; F ∈ Dp(Φ) with αn = an, βn =
an
bn

so that (2) holds and F ∈ De(H1,1) with

un = βn, vn = αn so that (5) holds.

(g) The loggamma(α, β) df F ∈ Dl(Φα) with an =

(
n(log n)β−1

Γ(β)

)1/α

, bn = 0 so that (1) holds;

F ∈ Dp(Φ) with αn = an, βn =
1

α
so that (2) holds and F ∈ De(H1,1) with un = βn, vn = αn so

that (5) holds.

(h) The Pareto df F ∈ Dl(Φα) with an = n1/α, bn = 0 so that (1) holds; F ∈ Dp(Φ) with αn = an,
βn = 1/α so that (2) holds and F ∈ De(H1,1) with un = βn, vn = αn so that (5) holds.
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6. Appendix

A.1. The l-max stable laws (Galambos, 1978) For parameter α > 0, the following are the different
types of l-max stable laws:

the Fréchet law, Φα(x) = exp{−x−α}, 0 < x;

the Weibull law, Ψα(x) = exp{−(−x)α}, x < 0;

and the Gumbel law, Λ(x) = exp{− exp(−x)}, x ∈ R.

A.2. The p-max stable laws (Mohan and Ravi, 1993) For parameter α > 0, the following are the
different p-types of p-max stable laws:

the log-Fréchet law, H1, α(x) = exp{−(log x)−α}, 1 < x;

the log-Weibull law, H2, α(x) = exp{−(− log x)α}, 0 < x < 1;

the standard Fréchet law, Φ(x) = Φ1(x), x ∈ R;

the inverse log-Fréchet law, H3, α(x) = exp{−(− log(−x))−α}, −1 < x < 0;

the inverse log-Weibull law, H4, α(x) = exp{−(log(−x))α}, x < −1;

and the standard Weibull law, Ψ(x) = Ψ1(x), x ∈ R.

A.3. Criteria for a df to belong to Dp(.) ( Mohan and Ravi, 1993)

Theorem 6.1.

(i) A df F ∈ Dp(H1,α) iff r(F ) =∞ and lim
t→∞

1− F (etx)

1− F (et)
= x−α, x > 0. And the norming constants

may be chosen as αn = 1 and βn = logF−(1− 1/n).

(ii) A df F ∈ Dp(H2,α) iff 0 < r(F ) <∞ and lim
t→∞

1− F (r(F )e−x/t)

1− F (r(F )e−1/t)
= xα, x > 0. And the norming

constants may be chosen as αn = r(F ) and βn = log r(F )− logF−(1− 1/n).

(iii) A df F ∈ Dp(H3,α) iff r(F ) = 0 and lim
t→∞

1− F (−e−tx)

1− F (−e−t)
= x−α, x > 0. And the norming

constants may be chosen as αn = 1 and βn = − log(−F−(1− 1/n)).

(iv) A df F ∈ Dp(H4,α) iff r(F ) < 0 and lim
t→∞

1− F (r(F )ex/t)

1− F (r(F )e1/t)
= xα, x > 0. And the norming

constants may be chosen as αn = −r(F ) and βn = logF−(1− 1/n)− log r(F ).

(v) A df F ∈ Dp(Φ) iff r(F ) > 0 and lim
t↑r(F )

1− F (texf(t))

1− F (t)
= e−x, x > 0, for some positive function

f and if this holds for some positive function f then
1

1− F (t)

∫ r(F )

t

1− F (x)

x
dx < ∞, and

it holds with the choice f(t) =
1

1− F (t)

∫ r(F )

t

1− F (x)

x
dx. And the norming constants may be

chosen as αn = F−(1− 1/n) and βn = f(αn).

(vi) A df F ∈ Dp(Ψ) iff r(F ) ≤ 0 and lim
t↑r(F )

1− F (texf(t))

1− F (t)
= ex, x > 0, for some positive function f

and if this holds for some positive function f then − 1

1− F (t)

∫ r(F )

t
1−F (x)

x dx <∞, and it holds

with the choice f(t) = − 1

1− F (t)

∫ r(F )

t
1−F (x)

x dx. And the norming constants may be chosen as

αn = −F−(1− 1/n) and βn = f(−αn).

A.4. Comparison of Dl(.) and Dp(.) domains (Mohan and Ravi, 1993)

Theorem 6.2. Let F be a df.

(i) If F ∈ Dl(Φα) with norming constants an > 0, bn ∈ R, then F ∈ Dp(Φ) with αn = an and
βn = 1/α.
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(ii) If r(F ) = ∞ and F ∈ Dl(Λ) with norming constants an > 0, bn ∈ R, then F ∈ Dp(Φ) with

αn = bn and βn =
an
bn
.

(iii) If 0 < r(F ) < ∞ and F ∈ Dl(Λ) with norming constants an > 0, bn ∈ R, then F ∈ Dp(Φ)

with αn = bn and βn =
an
bn
. Conversely, if r(F ) < ∞ and F ∈ Dp(Φ) with norming constants

αn > 0, βn > 0, then F ∈ Dl(Λ) with an = αnβn, bn = αn.
(iv) If r(F ) < 0 and F ∈ Dl(Λ) with norming constants an > 0, bn ∈ R, then F ∈ Dp(Ψ) with

αn = −bn and βn = −an
bn
. Conversely, if r(F ) < 0 and F ∈ Dp(Ψ) with norming constants

αn > 0, βn > 0, then F ∈ Dl(Λ) with an = αnβn, bn = −αn.
(v) If r(F ) = 0 and F ∈ Dl(Λ) with norming constants an > 0, bn ∈ R, then F ∈ Dp(Ψ) with

αn = −bn and βn = −an
bn
.

(vi) If r(F ) = 0 and F ∈ Dl(Ψα) with norming constants an > 0, bn ∈ R, then F ∈ Dp(Ψ) with
αn = an and βn = −1/α.

(vii) If r(F ) > 0 and F ∈ Dl(Ψα) with norming constants an > 0, bn ∈ R, then F ∈ Dp(H2,α) with

αn = bn and βn =
an
bn
. Conversely, if F ∈ Dp(H2,α) with norming constants αn > 0, βn > 0,

then F ∈ Dl(Ψα) with an = αnβn, bn = αn.
(viii) If r(F ) < 0 and F ∈ Dl(Ψα) with norming constants an > 0, bn ∈ R, then F ∈ Dp(H4,α)

with αn = −bn and βn = −an
bn
. Conversely, if F ∈ Dp(H4,α) with norming constants αn >

0, βn > 0, then F ∈ Dl(Ψα) with an = αnβn, bn = −αn.
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