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New Limit Distributions for Extremes Under a Nonlinear
Normalization
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Abstract. In this article we look at limit distributions for extremes under a new nonlinear normalization
of the form exp {un(|log|z||)*"sign(log|z|)} sign(z) which we have called as exponential norming. The
corresponding limit laws are called as e-max stable laws. We study e-max stable laws, their stability
property, their max domains of attraction, comparison between p-max and e-max domains and give
examples of distribution functions in e-max domains, some of which do not belong to I-max and p-max
domains.

1. Introduction and motivation

Extreme value distributions are well known and have been studied extensively in literature on extreme
value theory. These are used as approximations to distributions of normalized partial maxima M, =
max{X1, Xs,...,X,} of independent, identically distributed (iid) random variables (rvs) X1, Xa,..., X,
with common distribution function (df) F. The df F is said to belong to the l-max domain of attraction of
a nondegenerate df G under linear normalization, denoted by F' € D;(G), if there exist norming constants
an > 0 and b, € R such that

. Mn - bn . n
nlLrI;OP <an < x) = nhﬁngoF (anx + by) = G(x), x € C(G), (1)
C(G) being the set of all continuity points of G. The df G in (1) is called an extreme value df. It is well
known that there are only three types of possible nondegenerate limiting dfs G in (1), the l-max stable laws,
satisfying the stability relation G™(A,x+ B,) = G(x), z € R, n > 1, for some constants A, >0, B, € R,
and these are given in Appendix A.1. Here, two dfs F' and G are of the same type if F(z) = G(Ax + B) for
all z, for some constants A > 0 and B € R. For necessary and sufficient conditions for F' to satisfy (1) for
a given G, we refer to Galambos (1978), Resnick (1987) and Embrechts et al. (1997).

Pancheva (1984) introduced a nonlinear normalization called power normalization. The df F' is said to
belong to the p-max domain of attraction of a nondegenerate df H under power normalization, denoted by
F € D,(H), if for some norming constants c,, > 0 and 3,, > 0,

M, 1/Bn
lim P (‘
n—00 Qo
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m F"(ay|z|Prsign(z)) = H(z), z € C(H), (2)

= 1i
n—oo

Sign(Mn) < I’)
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where sign(z) = -1, 0 or 1 according as 2 < 0, = 0 or > 0. The possible p-types of limiting dfs H in (2)
are the p-max stable laws satisfying the stability relation H"(A,|z|P sign(z)) = H(z),z € R, n > 1, for
some constants A, > 0, B,, > 0, given in Appendix A.2. Here, two dfs F' and H are of the same p-type if
F(z) = H(a|z|?sign(z)) for all x, for some constants a > 0,3 > 0. Necessary and sufficient conditions for
F to satisfy (2) given in Appendix A.3 were derived in Mohan and Ravi (1993), see also Christoph and Falk
(1996) and Ravi and Mavitha (2015) for some recent work. All dfs mentioned in this article are given only
for x values for which they are in the interval (0, 1).

The following proposition gives a chain of equivalences which can be used to obtain p-max domain of
attraction from l-max domain of attraction and vice-versa. The proof of the proposition is given in the next
section. Here and elsewhere, F'x denotes the df of a rv X.

Proposition 1.1. Fx € Di(F¢) © Foxpx) € Dp(Fexp(e)) © F-exp(—x) € Dp(F_ exp(—¢)), where F¢ denotes
an l-maz stable df, Fowpe) and F_ oxp—¢) denote p-maz stable dfs.

It is of interest to extend this chain of equivalences from power normalization to the next possible
normalization and to see what kind of norming and limit laws arise. Though not obvious at the first
instance, this norming is found to be of the form

exp {un(| log [z[|)*"sign(log [[)} sign(z)

and we have called this as exponential norming and the corresponding limit laws as e-max stable laws.

This article looks at e-max stable laws, their stability property, max domains of attraction, comparison
between p-max and e-max domains and examples of dfs in e-max domains, some of which do not belong to
p-max domains and hence l-max domains. Section 2 gives definition of an e-max stable law, e-max domain
of attraction and obtains the e-max stable laws from p-max stable laws. Stability property satisfied by an
e-max stable law is mentioned and proved in this section. In Section 3 we obtain necessary and sufficient
conditions for a df to belong to the e-max domains of attraction of the e-max stable laws. A comparison
result between p-max and e-max domains is stated and proved in Section 4 which shows that every df
belonging to the p-max domain of attraction of a p-max stable law necessarily belongs to the e-max domain
of attraction of some e-max stable law and that the converse is not true. This shows that e-max stable laws
attract more dfs to their max domains than the p-max stable laws. In Section 5 we give some examples of
dfs in e-max domains, some of which do not belong to p-max domains and hence l-max domains. We have
given the l-max stable laws, p-max stable laws, criteria for a df to belong to p-max domains of the p-max
stable laws and comparison of l-max and p-max domains of attractions in the Appendix in Section 6 for
ease of reference.

2. Exponential norming, the e-max stable laws and stability properties
Before defining the e-max stable laws, we give the proof of Proposition 1.1 below.

Proof of Proposition 1.1. Suppose that F'x € D;(F¢) for some l-max stable df F¢. That is, there exist
norming constants a,, > 0 and b,, € R such that lim Fg¥(anz + b,) = F¢(x), x € R. Note that the l-max
n—oo

stable laws are all continuous. For z < 0, F;p(x)(fan(fx)ﬁ") = P*(eX < —au(—2)P») = 0 with
a, = exp(b,), Bn =ay, and for = >0,
: n Bn _ : n (X an) _ 13 n
nh_}n;o Fooon(anz™) = ”h_{roloP (e <exp(by)z®) = nh_{roloP (X < ap(logz) + by),
—  lim F}(au(loga) +b,) = Fe(log) = P(€ < 10gx) = Faxpie)(x),

so that Fexp(X) € Dp(Fexp(g))-
Conversely, if Fexp(x) € Dp(Fexp(e)) for some p-max stable df Fyp(¢), then for some norming constants

an >0, B, >0, we have
nll)rréo F, (X)(an | T |ﬂn Slgn(!l?)) = Fexp(ﬁ)(x)v z €R,

exp

— lim P"(eX <a, |z | sign(z)) = P(ef <), 2 €R. (3)
n— oo
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If z <0, then both sides in (3) are equal to 0. If 2 > 0, then using (3), we have

lim P"(eX < apaP")=P(ef <2) <= lim P"(X < B,(logz) +loga,) = P(¢ <logx),
n—oo

n—oo

= lim Fx(Bn(logz) +log ay,) = Fe(log x),
= 11_>m F¥(any +by) = Fe(y),y € R,

so that Fx € Dy(F¢) with a, = By, by, = loga,.
Similarly, if Fx € Dy(F¢) for some l-max stable df F¢, then for some norming constants a, > 0,b, € R,
I (7X)(exp(—b Yxin) = P*(—e=X < exp(—b,)z?) =1, 0 <z, and for = <0,

— exp

lim F" o x)(—exp(=b,)(—2)") = lim P"(— e X < —exp(=by)(—x)),

n—oo n—oo

= lim P"(X < an(—log(—x)) +by,),

= lim Fy(an(=log(—2)) + bn),
= Fe(—log(—z)) = P({ < —log(—7)) = F_ cxp(—)(2),

so that F_ exp(—X) € D ( — exp(— 5))
Conversely, if F_ exp(—x) € Dp(F_ exp(—¢)) for some p-max stable df F_ .y, (—¢), then for some norming
constants «, >0, 8, > 0, we have

nh_>H010F exp(— X)(an |z |ﬁn sign(z)) = FfeXp(fE)(x)a z R,
= nll)n;o P'(—e X <a, |z |’ sign(z)) = P(—e*<2), zeR. (4)

If x > 0, then both sides in (4) are equal to 1. If z < 0, then using (4), we have

nh_{rgo P(—e ¥ < —a,(—z)P") = P(—e ¢ <)
& lim P*(X < f,(=log(—2)) —logay) = P(£ < —log(—2)),
= lim Fy(Bu(—log(—2)) —logay) = F¢(~log(~x)),

= lim Fy(any +bn) = Fe(y),y € R,

so that Fx € Dj(F¢) with a, = By, b, = —loga,, proving the proposition. |

Remark 2.1. In view of the proposition, if rv € has an l-max stable df, then the dfs of €& and —e™¢ are
the p-mazx stable laws listed in Appendiz A.2. A similar result is used below to derive the e-mazx stable laws
from the p-mazx stable laws.

We define e-max stable laws, e-max domains and e-types of dfs below. After this the e-max stable
laws are derived. In the following definition F is the common df of iid rvs Xi,...,X,, and M, =
max{X1,..., X}

Definition 2.2. (i) A nondegenerate df U s said to be an e-mazx stable law if there exists a df F and
norming constants u, > 0,v, >0 such that

log |M,, ||\ ¥/¥"
lim P <exp { <°g|> sign(log IMnI)} sign(M,,) < x)

= lim P (M, < exp{(un(|log |z]})"" sign(log z]))} sign(x))
= lim F"(exp {(un (| log|a] )" sign(log|z]))} sign(x))
= U(z), zec). (5)
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(ii)) A df F s said to belong to the e-max domain of attraction of a mnondegenerate df U wunder e-
normalization, denoted by F € D.(U), if for some norming constants wu, >0 and v, >0, (5)
holds.

(iii) Two dfs F and U are of the same e-type if F(x) = U(exp{(u|log|x||”)sign(log|z|)}sign(x)),
x € R, for some constants u >0, v > 0.

The following theorem derives the e-max stable laws from the p-max stable laws by proving a chain of
equivalences to obtain e-max domains of attraction from p-max domains of attraction.

Theorem 2.3. Fx € Dy(F¢) & Fexpx) € De(Fexpe)) © F_oxp(—x) € De(F_exp(—¢)), where F¢ is a
p-maz stable law and Foypey and F_ o) denote e-maz stable laws.

Proof. If Fx Dbelongs to D,(F) for some p-max stable law F; then there exist norming constants
an >0, B, >0 such that lim F%(a, |z [P~ sign(x)) = F¢(x), = € R. Note that the p-max stable laws
n—oo

are all continuous. For x <0, FJ v (exp(un |log [z |['" sign(log | = |))sign(z)) = Pr(eX < —exp(ay, |
log | « ||% sign(log | = |))) =0 with w, = an, v, = B, n > 1. And for z >0,

lim F o ) (exp(un | log | z |[*" sign(logz))) = lim P"(e® < exp(ay, | logx [P sign(logx))),

n—oo €xp n—oo

= lim P"(X < o, | logz |’ sign(logz)),

n—oo

= lim F%(ay, |logz |° sign(logz)),
n—oo

= Ff(logx) = P(g < lng) = Fexp(f)(x)7

so that Fexp(X) € De(FeXp(g)).
Conversely, if Foxp(x) € De(Fexp(e)) for some e-max stable df Fp ), then for some norming constants
Uy > 0, v, >0, we have

lim F2 0 (exp(un | log | @ | sign(log | 2 )sign(a)) = Fuxp( (@), @ € R,
< lim P"(e® < exp(u, | log |z || sign(log | = |))sign(z)) = P(e* <z), z€R. (6)
n— oo

If z <0, then both sides in (6) are equal to 0. If = > 0, then using (6), we have

lim P"(eX < exp(u, |logz | sign(logx))) = P(e® < z),

n—oo

<— lim P"(X < u, |logz |"" sign(logx)) = P(¢ < logx),
n—oo

<« lim F¥(a, |logz | sign(logz)) = F¢(logz),
n—oo

— lim F(on |y | sien(y)) = Fe(y), y € R,

so that Fx € Dp(Fe) with a, = uy, By = vn.

Similarly, if Fx € Dp(F¢) for some p-max stable df Fg, then for some norming constants a, > 0, 8, >
0,
bn sign(log | = |))sign(z)) =1, 0<z,

Fllcxp(—X)(eXp(an | log ‘ T |
and for =z <0,

Un

lim F” o x)(—exp(un |log |z sign(log | z |)))

n—oo

= lim P"(—e ¥ < —exp(u, | log | z ||'" sign(log | z |))),

n—oo

= lim P"(X <up |log |z [[" sign(| log | = |])),

n—r oo

= lim Ff(an | log |« || sign(|log | = [])),
— Fe(~log(~1)) = P(¢ < —log(—)) = F_ exp(—) (@),
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so that F_ op(—x) € De(F_ exp(—g)) With u, = ap, v = Bp.
Conversely, if F_ exp(—x) € De(F_ exp(—¢)) for some e-max stable df F_ op,(—¢), then for some norming
constants wu, > 0,v, >0, we have, for x € R,

lm F? o (exp(ug | log | @ || sign(log | & ))sign(e) = F_ g (@),
& lim P*(—e X <exp(u, |log |z ||'" sign(log | z |))sign(z)) = P(—e ¢ <uz). (7)
n—oo

If >0, then both sides in (7) are equal to 1. If x < 0, then from (7), we have

lim P"(—e™X < —exp(u, |log | « || sign(log | z |))) = P(—e~¢ < x),

n—oo

< lim P"(X <wuy [log|z|[" sign(|log | z [|)) = P(§ < —log(—x)),

n— oo

— lim F¥(a, |log |z ||° sign(|log | = ||)) = Fe(—log(—=)),
n—oo

= lim F%(ay, |y |° sign(y)) = Fe(y), y € R,
n—oo

so that Fx € D,(F¢) with o, = u,, B, = v,. Finally, using (5), it is clear that dfs Fi,) and
F_ xp(—¢) are e-max stable laws whenever Fg is p-max stable, proving the theorem. O

Using the above theorem, we get the e-max stable laws listed below wherein the first six e-max stable
dfs have right end point =(F) = sup{z : F(x) < 1} > 0 and the subsequent six e-max stable dfs have
r(F) <0.

2.1. The e-max stable laws

(i) Loglog-Fréchet : Uy 4
(ii) Loglog-Weibull :  Uso(x) = exp
(iii) Standard log-Fréchet :  Hj 1

(iv) Inverse loglog-Fréchet :

loglogx)™%), = > e.
loglogz)?), 1 <z <e.

log(—logz))™%), /e <z < 1.

(—(
(=(=
z) = exp(—(logz)™h), = > 1.
(—=(=
(— (1 g(—logx))¥), 0 <z < 1/e.

Us
(v) Inverse loglog-Weibull : Uy
(vi) Standard Uniform :  Hj

(vii) Negative loglog-Fréchet :  Us log(—log(—x)))™*), —1/e < x < 0.
log(—log(—x)))%), -1 <z < —1/e.

(
(=
(—log(—z))™ '), -1 <z <O0.
(=
(

(=

(viii) Negative loglog-Weibull :  Ug o(x) = exp(—
(ix) Standard inverse log-Fréchet :  Hs (—
(=

)
(x) Negative inverse loglog-Fréchet : Uz o (z) loglog(—z))™),—e<ax < —1.
2) = exp(—(loglog(~2))?), 7 < —
)

= —1/z,z< -1

(xi) Negative inverse loglog-Weibull :  Ug
(xii) Standard inverse log-Weibull :  Hy q

Remark 2.4. Note that the I-max stable laws Fréchet, Weibull and Gumbel and the p-maz stable laws
standard Fréchet and standard Weibull laws are not e-maz stable laws but the p-max stable laws standard
log-Fréchet, standard uniform, standard inverse log-Fréchet and standard inverse log- Weibull laws are e-mazx
stable laws.

2.2. Stability property

The following result shows that the e-max stable laws satisfy a stability property which implies that if
X1,...,X, are iid with common df as an e-max stable law, then the df of e-normalized partial maxima
M, = max{Xy,...,X,} isexactly equal to the same e-max stable law for every n > 1, which, in particular,
implies that an e-max stable law belongs to the e-max domain of attraction of itself.
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Theorem 2.5. If U is an e-max stable law then U satisfies the stability property:
U™ (exp{(un|log|z||"")sign(log |x|)} sign(z)) = U(x), x € R, n > 1,
for some constants wu, >0, v, > 0.

Proof. The stability properties follow from the following observations wherein norming constants w, and
v, are specified for each of the e-max stable laws.

(i) We have, for n>1, e <z, with u, =1, v, = n'/®,

v _ up (logz)?ny—a\ ™ v
Ulrta(eun(logm) ”) — (6 (log log e"n ) ) , eun(logm) n > e,
_ efn(log(un(log:J(:)“"'))_"’Y _ efn(nl/aloglogz)_”
— —x
e~ (oglogz)™* _ Ur,a(x), z>e.
(ii) For n>1, 1 <z <e, with u, =1, v, =n~Y we have
vn (= un (log 2)?n ya\ T vn,
Uzn)a(eun(logz) ) — (8 (—logloge ) ) , 1< eun(logr) <e,
— efn(f log(un (logz)"™))* _ efn(fnfl/o‘ log log z)“

e~ (= loglogx)™ _ Usolz), 1<z <e.

(iii) We have, for n > 1, 1 <=z, with u, =n, v, =1,
H{l’l(eun(logz)”") = (e_(log eun(log2)"n )71)71 s eun(logw)v" > 1,

= e_"(u”(l‘)*c>””)v")71 = e_(logg”r1 = Hya(z), z > 1.
(iv) We have, for n>1, e~! <z <1, with u, =1, v, = n'/®,
Uga(efun(flog x)v") — (e*(flog(f loge™"n(= 1ng)vn))_a>n’ e ! < G,u"(, log z)"™ <1,
— o n(—log(un(—logz)"™))~"
e~ (Flos(=log2)) ™" _ 7, (2), et <z < 1.
(v) We have, for n>1, 0 <z <e™', with u, =1, v, =n~1/*,
Uy (e—un(—logm)v") = (e_(log(—loge*“"“logz)“n))a>n 0 < e~ un(—logz)* _ 1
NeY ) = )
— o n(log(un(—logz)*m))*
e (os(=log)™ — 7, (2), 0<z<et
(vi) We have, for n>1, 0 <z <1, with u, =n"! v, =1,
HY (e~ tn(Slog)™y (e,un(,k,gz)vnY, 0 < e un(—loga)™ 1
= e (Floed) —p — Hy (2), 0<z < 1.
(vii) We have, for n > 1, —e~! <z <0, with u, =1, v, =n'/®,

U o (—emtn(Zlosa)™y - (efaog(f1oge—“n<—m“””"))”)"’ —el < _emun(=log(=2)"" _

—  —n(log(un(=log(=x))""))"*
ef(log(*log(*r)))7CY = []57(](3;)7 —671 <z <0.
(viii) We have, for n>1, —1 <2 < —e~!, with u, =1, v, =n~/,

Uga(—e—un(—log(—r))“”) = (e_(—log(—loge’“"(’l"g(’z))vn))a)n

—un (— 1 — Un —1
L1 < —emun(—log(-m)" -1

_ efn(f log(un (— log(—x))¥m))*

o~ (= log(—log(—z)))* _ Us(z), -1 <z < —e L.
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(ix) We have, for n > 1, —1 <2 <0, with u, =n, v, =1,
Hgl(—eiu"(i log(fa:))“") _ (67(7 log e~ un (= log(—z))n )_1)71 , 1< 76711%(7 log(—z))¥n < 0’

e—n(un(*log(*l’))“”)_l
_ e—(—log(—as))*1 _ H3,1($)7 -1 <2z <0.

(x) We have, for n>1, —e <z < —1, with u, =1, v, = n'/®,

Uz,

)a(_eun(log(—ac))”") — (e—(—logloge“"(log(*r)vn))7(1)”’ —e< —etn(log(=z))"™ -1,

— (= log(un(log(=2))""))"
= e (Flogloe(=2)™" _ 7. (2), —e <z < —1.
(xi) We have, for n > 1, z < —e, with u, =1, v, = n'/®,

n

Uga(_eu"(]og(fz))”") = (ei(bg log etn (los(==)™n ))—a> —eun(log(=z))"" —e,

)

= e*’ﬂ(log(’u«n(log(*w))%))_(1 — e*(loglog(—z))—” _ U&a(x)v r < —e.
(xii) We have, for n>1, = < —1, with u, =n~!, v, =1,
Hyy (—eunosC=oD™) - — <€*un(10g(4)“")n’ _eunllos(=a)"™

= e nun(log(=2))"" _ o—(log(—2)) _ Hyq(z), = < -1

3. Necessary and sufficient conditions for a df to belong to D.(.)

In this section, criteria are given for a df to belong to the e-max domain of attraction of e-max stable
laws. For a df F, F~ is defined as F~(y) = inf{z € R: F(z) >y}, y € R, — is used to denote ‘tends
to’ and max{a,b} is denoted by aVb for a € R;b € R.

1— F(e”
Theorem 3.1. A df F € D.(U1,) for some o >0 iff (i) r(F) = oo and (i) tlim 1F((6t)) =
—00 — e€

x~=® x> 0. Here we can take u, =1, v, =loglog F~ (1 —1/n).

Proof. f F € D.(U1,,) then from (5), lim F7(eun(o82)™) = ¢=(loglog®)™® "4 > ¢ for some norming
n—oo
constants wu, > 0,v, > 0. Putting =z =e, we get lim F"(e"") = 0. Defining ¥ = log(a Vv X) for some
n—o0

a,0<a<1, we have
G(y) =P(Y <y)=P(log(aVv X) <y)=F(e¥), y=>loga, and r(G) =logr(F). (8)

With a,, = U, Bn = vy, trivially, for = <1, 0 < G"(a,|z|? sign(z)) < G™(u,) = F*(e"") — 0 and for
z>1,

i n Bn & _ : n( o Py g n( un (loge®)’n
nlLH;OG (an x| sign(x)) = nILH;oF (e )—nlgn;oF (e ),

= e_(loglogemr = e_(lOgm)ia = Hlﬂ(l‘)’

@

1—G(e™
sothat G € D,(Hi,q). Therefore, from Theorem 6.1(i) in Appendix A.3., r(G) = 0o and lim L= Ge™) =

t—oo 1 — G(et)
_ e _ tx
2% and hence r(F) =00 and lim - F(et ) = lim 1 - G)

R P M ey =z~ % x>0, proving (i) and (ii).



Ravi and Mavitha / ProbStat Forum, Volume 09, January 2016, Pages 01-20 8

Conversely, if (i) and (ii) hold for some « > 0, then defining G asin (8), we have r(G) = logr(F) = oo

1= G(e) _1—F(e)
wd BTG T AT e
G € D,(Hy,4) with ay, =1, 5, =logG~(1—1/n). Therefore, with u, =1, v, = 3, = loglog F~(1—1/n),
Fr(eloe®)™) = G*((logx)") — Hiy o(logz) = e~81082)™" — 17} (2), 2 > e, so that F € D.(Ur.a),
proving the theorem. O

=27 % x > 0. Hence from Theorem 6.1(i) in Appendix A.3.,

1— F(elogr(F)efw/t)

Theorem 3.2. A df F € D.(Us,), >0 iff (i) 1 <r(F)<oo and (i) tli}m = F(eoer e
o 1 — elogr(F)e

=z® x> 0. Norming constants can be chosen as u, = logr(F), v, =loglogr(F) —loglog F~ (1 —1/n).

Proof. If F € D.(Us,o) then (5) holds for some norming constants w, > 0,v, > 0, so that
lim Fn(evn(los@)™) = o=(=loglog2)® 1 < o < ¢, Putting = 1 we then get F"(1) — 0 and putting

n—oo

x=-e weget F"(e"") — 1. Defining Y =log(aV X), for some a,0<a <1, weget G asin (8) and
with @, = Uy, Bn = v, for <0, 0< G, |z |% sign(z)) < G*(0) = F*(1) — 0, and for x > 1,
G™(apa) > G™(ay,) = F(e¥) — 1. For 0 < < 1, we have

lim Gn(anﬂ;ﬂ”) —  lim F"(ea" xﬁn) — lim F"(e"" (log e®)vn )7
n—00 n—00 n—00

= exp(—(—logloge”)”) = exp(—(—logz)®),

so that G € D,(Haz,a). Therefore from Theorem 6.1(ii) in Appendix A3.,, 0 < r(G) < oo and

o L= GG ) L= F(oer™ey 1 - G(r(G)e"Y)
tlgrolo =G (G i) x*. So, 1 <r(F) < oo and tliglo [~ F(doer (e ~ tll>r£<> GG
x“, x >0, proving (i) and (ii).

Conversely, if (i) and (ii) hold for some « > 0, then defining G asin (8), we have 1 < r(F') < oo so that

_ —x/t _ log r(F e/t
0 <r(G) < oo and tliglo 1 — gg:gg;zljt; = tliglo 1 — ?EZIOgT(F;mi =z% x > 0. Then from Theorem
6.1(ii) in Appendix A.3., G € Dy(Hs,,) with a,, = 7r(G), B, =logr(G)—log G~ (1—1/n). Therefore, with
u, = logr(F), v, = loglogr(F) —loglog F~(1—1/n), F"(e"(e2)™) = G"(u, (logz)"") — H ,(logz) =
exp(—(—loglogz)*) = Uzn(x), 1 <x <e, sothat F € D.(Us,), proving the theorem. O

1_F tel'f(t)
Theorem 3.3. A df F € D.(Hy1) iff (i) r(F) > 1 and (i) lim I-Fer )

ttogr(F) 1 — F(et) = e, Jor some

positive valued function f. If (i1) holds for some f then f;OgT(F) %(ez)dm < oo for 0<a<logr(F)
1 z
and (ii) holds with f(t) = mﬁlogr(m %(e)dx. The norming constants here may be chosen as
—F(e

up, =log F~ (1 —=1/n), v, = f(uy).

Proof. If F € D.(Hy,1) then (5) holds for some norming constants w, > 0,v, > 0, so that
lim F7(evn(log®)™) = e=(082)™" 2 > 1. Putting z =1, we get F™(1) — 0. Defining ¥ =log(a VvV X)

n—oo
for some a, 0 < a <1, we have G as in (8) and with oy, = up, B, = v,, for <0,0< G™(ay, | z |Pr
sign(z)) < G™(0) = F"(1) — 0. For « >0 we have

nlgr;o G”(anxﬂ") — nlggo Fn(ean zﬁn) _ nlggo F"(e“” (logez)”n) _ e—(logez)*l — e lm _ (I)(LE),

1 — G(te*9(®)
sothat G € D,(®). Therefore, from Theorem 6.1(v) in Appendix A.3., 7(G) > 0 and TliI(I(l;) 1G(Cf(t)) =
tTr -
1 r(G) 1-G(z)

1-G(¢t) 7t z
Re-writing these in terms of F, we get r(F) > 1

dr < oo

e~ *, for some positive valued function g, and if it holds for some g, then

1 ) 1l
and it holds with g¢(t) = 1—7G(t) ft (@) %()dz.
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1— F(ete”’) 11— G(tem®)

li -~ 7 =1 I S A
mog?(F) 1— F(et) tTiI(%) 1-G() “

T=F(eh tIOgT(F) %(ez)dx < oo, and we can take f(t) =

and for some positive valued function f and

if this holds for some function f, then

1 ogr —F(e”® . . ..
TR tl gr(F) 1 I;( )dx, proving (i) and (ii).
Conversely, if (i) and (ii) hold, then defining G as in (8), »(F) > 1 which implies that r(G) > 0
1 — G(ter9® 1— F(et’"
and lim L = lim # = e ®, where g and f are as above. Hence from

tr(G) 1-— G(t) ttlog r(F) 1-— F(et)
Theorem 6.1(v) in Appendix A.3., G € D,(®). Therefore, with u,, =logF~ (1 —1/n) and v, = f(uy),
Fn(eun(logm)vn) = Gn(un(logl,)vn) N @(logz) — e*(logw)71 = ]—[171(17)7 x >0, so that F € DE(H1,1)7

proving the theorem. O
e o L=Flet) .
Theorem 3.4. A df F € D.(Usq) iff (i) 7(F) =1 and (ii) lim ————> =y~ %y > 0. Norming
’ t—oo 1 — F(e*e )
constants can be chosen as u, =1, v, = —log(—log FF~ (1 — 1/n)).

Proof. If F € D.(Us ) then (5) holds for some norming constants wu, > 0,v, > 0, so that

lim F7(e 4 (=1080)"™") = exp(—(—log(—logx))™®), 1/e < x < 1. Putting = = 1/e, weget lim F"(e7") —

n—oo n— oo

0 and putting x =1, we get lim F™(1) = 1. Defining Y =log(a VvV X) for some a, 0 < a < 1, we have
n—oo

G asin (8) and with «a, = u,, B, = v,, for x < —1, 0 < G"(~a,(—2)) < G"(~a,) = F*(e7%) = 0

and for = >0, G"(a,z°") > G"(0) = F*(1) = 1. For —1 <z < 0, we have

P sign(x)) = lim F”(e“""(_m)ﬁ") = lim Fm" (e un(Tloge)™y
n—oo n—oo

_ e (los(-loget )T _ o (—los(-a) ™ _ 1. ()

lim G"(ay|z
n—oo

i

1— _ ,—tz
sothat G € D,(Hs,). Therefore, from Theorem 6.1(iii) in Appendix A.3., 7(G) =0 and tlim 162((6—1:)) =
—oo 1 — —e
1— Fe " 1—G(—e
= So, r(F)=¢"9 =1 and tliglolF((iS‘)) = tlggo 1G((eet)) =z % x>0, proving (i) and
(ii).

Conversely, if (i) and (ii) hold for some « > 0, then defining G asin (8), we have r(G) =logr(F) =0
1—G(—e ™ 1—Fle= "

and tli)rgo l—G((—ee—t)) = tl—lglo 1—F((i—et)) =2~ x> 0. Then from Theorem 6.1(iii) in Appendix A.3.,

G € Dp(Hs,o) with «, =1, 8, = —log(—G~ (1 —1/n)). So, with u, =1, v, = 8, = —log(—log F~ (1 —

1/n)), F' (e~ (=188 ) = G"((—(~logx))"") — Hjo(logz) = e~ (Tlos(=log2))™" — 17y (2), 1/e <z < 1,

proving the theorem. O

1— F(elog(r(F))ey/t)
Theorem 3.5. A df F € D.(Uy,) iff (1) 0<r(F) <1 and (i) tlgg() = F(coatr P

=y“, y > 0. Norming constants can be chosen as u, = —logr(F), v, =loglog F~(1—1/n)—loglogr(F).

Proof. If F € De(U4’,a) then (5) holds for some norming constants u, > 0,v, > 0, so that
lim F7(e un(—loga)™) — g=(log(—log=))" " 0 < 2 < 1/e. Putting x =0, we get F"(0) — 0, and putting

n—oQ
x=1/e we get F"(e ") — 1. Defining Y =log(aV X), for some a, 0 < a < r(F), we have G as in
(8) and with a,, = U, Bn = Vs, for > -1, 1> G"(a, |z |P* sign(z)) > G™*(—a,) = F"(e™") — 1
and for =z < —1,
lim G (anlel sign()) = lim Fr(e=n(=0") = lim Fo(eum (~1oze)™)
n—oo n—oo n—oQ
o (—los(—lore)” _ o~(—los(-)" _ 1, (z).

)
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sothat G € D,(Hy ). Therefore from Theorem 6.1(iv) in Appendix A.3., r(G) < 0 and lim M =
p\H4,a)- . pp 0., QS G(T(G)el/t) =
o 1— F(elogr(F)ew/t) ' 1— G(T(G)em/t) . - '
% So, 0 <r(F)<1 and lgglo = F(eear (P = tlggow =z% x>0, proving (i) and
(ii).

Conversely, if (i) and (ii) hold for some « > 0, then defining G asin (8), 0 < r(F) < 1 which
N 1—Gr(@)er/ty 11— F(elosr®)erty
implies that r(G) < 0 and IE&W = tlg(r)lo = F(eoer Py x
Theorem 6.1(iv) in Appendix A.3., G € Dy(Hyo) with o, = —1(G), B, =log G~ (1—~1/n)—logr(G). So,
with u, = —logr(F), v, = loglog F~ (1 —1/n) —loglogr(F), F"(e~%r(=1082)"") = G"(—y,,(—logx)’") —
Hy o(log z) = exp(—(log(—log x))®) = Us,o(x),0 <z < 1/e, proving the theorem. O

, * > 0. Hence from

1— F(et<” )
tTlog T(F) 1-— F(et) a

positive valued function f. If (ii) holds for some f then tlogr(F) 1= F(e =P g < o for t < logr(F)

Theorem 3.6. A df F € D.(Hz1) iff (i) 0 <r(F) <1 and (ii) e*, for some

1 ogr —_ .
and (ii) holds with the choice f(t) = TSR tl g7 (F) %()dx. The norming constants here may be
—F(e

chosen as u, = —logF~(1—1/n), v, = f(—up).

Proof. If F € Do(Hz1) then (5) holds for some norming constants w, > 0,v, > 0, so that
lim Fn(e un(=1o82)™) = 2 0 <z < 1. Putting z =1, F*(1) — 1. Defining Y = log(aV X) for some

n—oo
a,0<a<r(F), wehave G asin (8) and with a, = Uy, f, = v, for >0, 1> G*(a,z%) > G"(0) =
F™(1) - 1. For z <0,

lim G"(ay|z|?" sign(z)) = lim F”(e*a"(*x)ﬂ") = lim F"(e7Un(T1o8e)™) — o — W(z),

n—oo n—oo n—oo

1 — G(te®®
sothat G € D,(¥). Therefore, from Theorem 6.1(vi) in Appendix A.3., r(G) <0 and Tlir(%) 1(5(15)) =
tTr —
e, for some positive valued function g, and if this holds for some positive valued function ¢ then

fT(G) 1= G(x)dx < oo and it holds with g(t) = fT(G) - G(x) dz. Thus 0 < r(F) <

1 1
1— F(ete””” 1 — G(tes®
1 and lim # = lim L = ¢e%, for some positive valued function f
ttogr(F) 1 — F(et) tr(@)  1—G(t)
and if this holds for some f then 717F(t) tlogT(F) L(e)dx < 0o, and it holds with f(t) =
— F(e
]- r —F(e® . . ..
T ftlog (F) %()dx, proving (i) and (ii).
Conversely, if (i) and (ii) hold, then defining G as in (8), 0 < r(F) <1 which implies that r(G) <0
1— G(tema(®) 1— Fet”"”
and lim L = lim # = e*, where ¢g and f are as above. Then from
tr(@  1—G(t) ttogr(F) 1 — F(et)
Theorem 6.1(vi) in Appendix A.3., G € D,(¥). So, with w, = —logF~ (1 —1/n) and v, = f(—up),
Fr(eun(=1082)") — G (y, (logz)"") — ®(logz) = x = Ha1(x),0 < z < 1, proving the theorem. O
— F(—e=*")

Theorem 3.7. A df F € D.(Us ) iff (i) 7(F) =0 and (i) hm =z7% x> 0. Norming

_F( e—et)
constants can be chosen as u, =1, v, = log(—log(—F (1 — 1/n)))

Proof. If F € D.(Us,) then (5) holds for some norming constants wu, > 0,v, > 0, so that

lim F7(—e un(Z108(=2)") — exp(—(log(—log(—x)))™%), —1/e < z < 0.

n—oo
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Putting z = —1/e we get F"(—e "") — 0 and putting 2 =0 we get F"(0) — 1 so that r(F) < 0.
Defining Y = —log(—X), we have

G(y) = P(Y <y) = P(~log(-X) <y) = F(=¢"), y € R, and r(F) = — ", (9)

With a, = up, Bp =0y, for £ <1, 0< G (o, |z
x > 1, we have

fr sign(z)) < G™(a,) = F™(—e™ ") — 0, and for

lim G"(ay|z|? sign(x)) = lim F”(—ef’l"zﬁn) = lim F"(—e tn(Tloge™™)™y)

n—oo n—oo n—oo

_ e_(log(—logefm))fa — e—(IOgm)ia = Hl,a(x)

1— tx
sothat G € D,(H,o). Therefore, from Theorem 6.1(i) in Appendix A.3., r(G) = oo and tlim 1GG((et)) =
—oo | — e
1— F(—e" 1-G(e*
7% So, r(F)=—e"¢ =0 and lim (e ) = lim 1= G =z~ % x>0, proving (i) and

t—00 m t—oo 1 — G(et)

(ii).

Conversely, if (i) and (ii) hold for some « > 0, then defining G as in (9), we have r(G) =

tx —e'

—log(—r(F)) = oo and 1111;% = tli)r&ll__};((__eeet)) = 27 1z > 0. Then from Theo-
rem 6.1(1) in Appendix A.3., G € D,(Hy,,) with an =1, B, = logG~(1 — 1/n). Therefore, with
un =1, v, = log(—log(—F~ (1 = 1/n))), F*(—e~(7162)™) = G"((~log(—2))"") — Hia(~log(—2)) =
e~ (og(=log(=2))) ™" = 7y (z), —1/e <2 <0, so that F € D6<U5,a)7 proving the theorem. O

1— F(_emg(—r(F))e*w/t)
% T F(—closlr(Fe i77)
0. Norming constants can be chosen as u, = —log(—r(F)), v, = loglog( r(F)) —loglog(—F~(1—1/n)).

Theorem 3.8. A df F € D.(Us,) iff (i) =1 <7(F) <0 and (ii) hm =2z% x>

Proof. If F € D.(Us,) then (5) holds for some norming constants wu, > 0,v, > 0, so that
lim F7(—eun(=108(=2))"") = exp(—(—log(—log(—z)))*), —1 < = < —1/e. Putting =z = —1 we get

n—oo
F"(—1) — 0 so that r(F) > —1 and putting = = —1/e we get F"(—e ") — 1 and hence r(F) <0.
Defining Y = —log(—X) we get G asin (9) and with «, = up, B, = vy, for © <0, 0 < G"(ay, |
z [P sign(z)) < G*(0) = F*(—=1) — 0 and for = > 1, G"(a,2”") > G"(ay,) = F"(—e ") — 1. For
0 <z <1, we have
. n Bn o — . n(__—ay, aPn — 1 n(_ ,—un(—loge *)"n
nh_}rroloG (cun|z|P sign(z)) nh_{r;OF (—e ) nh—>HoloF (—e )

— e (Zlog(—loge™ ™) _ ,—(=logz)® _ Hy o (z),

)

so that G € Dp(Haz,o). Therefore, from Theorem 6.1(ii) in Appendix A.3., 0 < r(G) < co and
L= (s G(@)el

).
-GG _ _ _
M TG (Gei & 8o mh<r(E) <0 and lim Sn — e < M TG G)e ) T
)

x®, x > 0, proving (i) and (ii).

Conversely, if (i) and (ii) hold for some « > 0, defining G asin (9), —1 < r(F) < 0 which implies

1—G(r(Ge ®/t . 1— F(—elos(-r(Fne/"
that 0 < r(G) < co and 75hrglo = GETEG%el/t)) = Jim —— FEelog(r(F))el/t§
Theorem 6.1(ii) in Appendix A.3., G € Dy(Ha,) with «, =r(G) and 8, =logr(G) —logG~(1—1/n).
So, with wu, = —log(—r(F)), v, = loglog(—r(F)) — loglog(—F~(1 — 1/n)), F(—e un(=log(zz))™") =
G™(un(—log(—x))") = Hy o(—log(—z)) = exp(—(—log(—log(—=x)))*) = Us,a(z), —1 <z < —1/e so that
F € D.(Us,.), proving the theorem. O

=z% = > 0. Then from
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1_ F(_e_teyf(f))
Th 3.9. Adf FeD.(Hs,) iff (i) =1 <r(F)<0 and (i) i
eorem f FeD.(Hsq1) iff (i) <r(F)<0 an (”)nf logl(rrjr(F)) [y rp—

=e Y for some positive valued function f. If (ii) holds for some f then f; log(=r (M) %dw < o0

for 0 <t < —log(—r(F)) and (i) holds with the choice f(t) = T F e I log(—n(F)) L;e_y)dy.
— F(—e

The norming constants here may be chosen as u, = —log(—F~ (1 —1/n)), v, = f(un).

Proof. If F € D.(H31) then (5) holds for some norming constants w, > 0,v, > 0, so that
lim F7(—eun(=108(=2))"") — exp(—(—log(—x))~ '), =1 <z < 0. Putting = = —1, we get F"(—1) — 0

n—oo

and putting =z =0, we get F™(0) — 1 so that r(F) < 0. Defining ¥ = —log(—X) we have G asin
(9) and with o, = upn, Bp = v,, for <0, 0 < G™ (v, |z |P sign(z)) < G™(0) = F*(—1) — 0, and for
x >0, we have

3 n Bn g — 3 n(_ —a,zhn — 1 m(_ ,—un(—loge ")y _ —1/z _
nll_{r;OG (aun|z|P™ sign(x)) nh_}ngoF( e ) nh_{r;OF( 2 )=e¢€ O(x),

. 1—G(ter®)
so that G € D,(®). Therefore, from Theorem 6.1(v), 7(G) >0 and lim —————= =¢ * for some

tr(@) 1 —G(t)
G(x)

rG) 1 — .
l—G(t)ft » dr < oo and it

positive valued function ¢, and if this holds for some ¢ then

1 ra) 1 —G(z)

holds with ¢(¢t) = dx. Re-writing in terms of F we get —1 < r(F) < 0 and

1-G(t)
1— F(—ete”) 1 — G(ter9®)

lim — = lim —————= = e~*, which holds for some positive valued function

tt—log(—r(F)) 1 — F(—e™t) tr(@) 1 —G(t)
1 “log(—r 1—F(—e "
and if this holds for some positive valued function then —— |, log(—r () ﬁdm < 00,
1—F(—et)”t x
1 ~log(—r 1—F(—e " . . .
and it holds with (1) = 3= |, log(=r(F)) # dz, proving (i) and (ii).
Conversely, if (i) and (ii) hold, then defining G asin (9), —1 < r(F) <0 which implies that (G) > 0
1— G(tews®) 1— F(—ete”)

and lim ——— = lim = e~ %, where and are as above. Hence

tr(@)  1—G(t) tt—log(—r(F)) 1 — F(—e™?) g !

from Theorem 6.1(v) in Appendix A.3., G € D,(®). So, with w, = —log(—F~(1 —1/n)), v, = f(un),
Fri(—emun(1o8Co)™) = G (uy (~log(—2))") — ®(—log(~2)) = exp(—(~log(~2))~") = Hza(z), —1 <

x <0, sothat F' € D.(Hs), proving the theorem. 0
e Lo 1=F(=e )
Theorem 3.10. A df F € ,De(U’noé) ’Lﬁ (Z) T(F) = —1 and (Z'L) thm m =X a7 xz > 0.
—00 — —e®
Norming constants can be chosen as u, =1, v, = —loglog(—F~ (1 — 1/n)).

Proof. If F € D.(Uzr,,) then (5) holds for some norming constants u, > 0,v, > 0, so that
lim F7(—etr(108(=2)"") — exp(—(—loglog(—x))~%), —e < z < —1. Putting = —e we get F"(—e%r) —

n—roo

0 and putting = —1 we get F"(—1) — 1 so that r(F) < —1. Defining Y = —log(—X) we have G
as in (9) and with a,, = Un, By = v, for <1, 0 < G"(—a,(—2)) < G"(~a,) = F*(—e*) — 0 and
for >0, G"(a,2P) > G"(0) = F*(—1) = 1. For —1 <z <0, we have

. n Br o _ . n(_ an(fzv)ﬂ" — % n(_uy (loge ")
HILH;OG (o || sign(x)) nhﬁngoF (—e ) nl;n;oF (—e ),

_ o (Slogloge™ )™ _ ~(—loB(-2) ™" _ fo (),
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1-G(—e ™"
sothat G € Dy(Hs,q). Therefore, from Theorem 6.1(iii) in Appendix A.3., r(G) =0 and hm Zl—G((—eet)) =
1— F(—e " 1—G(—e '
= So, 7(F)=—e "% = -1 and tli)rgo 1—F((—eeet)) = tli)rgo l—G((—ee—t)) =z~ % x >0, proving (i)
and (ii).
Conversely, if (i) and (ii) hold for some « > 0, then defining G as in (9) we have r(G) =

—tx

1— _,—tx 1— F __ €
—log(—r(F)) = 0 and thﬁlgol_(é((_ee_t)) = tlgglol—F((—eee‘t)) =z % x > 0. Then from Theorem

6.1(iil) in Appendix A.3., G € D,(Hs,) with a, =1 and B, = —log(—G~(1—1/n)). So, with u, =1
and v, = B, = —loglog(—F~(1 — 1/n)), F*(—ele(=2)"") = G"((—log(—x))"") — Hz (—log(—z)) =
exp(—(—loglog(—x))~) = Ur,o(z), —e <z < —1, proving the theorem. O

1— F(e’ log(fr(F))ez/t)
Theorem 3.11. A df F € D.(Us,o) iff (i) r(F) < —1 and (ii) tlim %, x> 0.

—o0 1 — F(—eloa(—r(F)e/t) ~
Norming constants can be chosen as u, = log(—r(F)), v, = loglog(—F~ (1 —1/n)) — loglog(—r(F)).

Proof. If F € D.(Us, a) then (5) holds for some norming constants wu, > 0,v, > 0, so that
lim F7(—evn(los(= )" ") = exp(—(loglog(—x))%), = < —e. Putting z = —e, we get F"(—e%") — 1 and

n—oo

for 2 >0, by (5), F"(e*(°8®)™) 1, so that r(F) < 0. Defining ¥ = —log(—X) we have G as in
(9) and with a,, = Un, Bn = Vp, for —1 <z <0, 1> G (—an(—2)%") > G"(~a,) = F"(—e') — 1,
and for z < —1, we have

. n Br ot _ . n(__ an(fzv)B" — % n(_uy (loge ")
HILH;OG (o || sign(x)) nhﬁngoF (—e ) nl;n;oF (—e ),

= exp(—(logloge™))* = Hy (),

sothat G € Dp(Ha,o). Therefore, from Theorem 6.1(iv) in Appendix A.3., 7(G) < 0 and hm M =
P 4,0& . ) . pp Ty Pangel 1 7G(T(G)61/t) -

N ) 1— F(eflog(fr(F))eI/t) . 1— G(T(G)ew/t) N ) )
xz®. Thus r(F) < —1 and tlgglo I~ F(—cloa(—r ety — tlggow =z% z >0, proving (i)
and (ii).

Conversely, if (i) and (ii) hold for some « > 0, then defining G as in (9), r(F) < —1 which

. . 1=G(r(Gert .1 — F(—elos(=r(#pet
implies that »(G) < 0 and tliglol—GErEGiel/t; = Jim - Fielog(r(F))el/t))
from Theorem 6.1(iv) in Appendix A.3., G € D,(Hs,o) with o, = —r(G) and B, =logG~(1—1/n) —
log7(G). So, with w,, = log(—7(F)), v,, = loglog(—F~(1—1/n)) —loglog(—r(F)), F"(—e"rUos(=2))"") =
G™(un(—log(—x))") — Hya(—log(—z)) = exp(—(loglog(—z)))¥) = Us(x), x < —e, proving the
theorem. O

=z% x > 0. Then

1 F(_eiteyf(t))
Theorem 3.12. A df F € D.(Hs1) iff (i) r(F) < -1 and (zz) B ( N By = eY,
Og - -

for some positive valued function f. If (ii) holds for some f then ft log(=r (M) de < oo for

1 r )
0 <t < —log(—r(F)) and (i) holds with f(t) = —Wft log(—r(F)) Ldy Norming
— F(—e

constants may be chosen as u, = —log(—F~ (1 —1/n)), v, = f(—u,).

Proof. If F € D.(Hy41) then (5) holds for some norming constants u, > 0,v, > 0, so that

lim F7(—evn(os(=2)"") = _1/z x < —1. Putting 2 = —1, we get F"(—1) = 1 so that r(F) < —1.
n—oo
Defining Y = —log(—X) we have G as in (9) and with «a,, = u,, Bn = v,, for z > 0,

1 > G"(apzP) > G"(0) = F*(-1) — 1. For z < 0, we have lim, ... G"(a,|z|’" sign(x)) =
limy, oo F(—e@n (=) = lim, o F7(—eun (loge™ ™) = ¢ = ¥(z), so that G € D, (V). Therefore,
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1 — Gtera)

from Theorem 6.1(vi) in Appendix A.3., r(G) <0 and lim ———————= = ¢ for some positive valued
tr(@ 11— G(¢)
1 r x .
function g, and if this holds for some function g then —1 aw @ 1= G( )dx < 0o, and it holds
- - _ 1 r(G) 1-G(z) e
with the choice g¢(t) = 717G(t)ft ——*dxr. Re-writing in terms of F we get »(F) < —1 and
1 — F(—p—te™’® 1 — G(te®9®
lim (ze ) = lim L = €%, for some positive valued function f and if
t1(— log(—r(F))) — F(—e) tr(@  1—G(t)
this holds for some f then T I log(=r(F)) de < o0, and it holds with the choice
1 — log(—r — —e . . ..
ft) = TR /; log(—r(£7) %dx, proving (i) and (ii).
Conversely, if (i) and (ii) hold, then defining G as in (9), r(F) < —1 which implies that r(G) <0
1— G(tew®) 1— F(—et"")
and lim ——= = lim = e%, with and as above. Then from
tr(@)  1—G(t) tH(—log(—r(F))) 1—F(—e™t) g !

Theorem 6.1(vi) in Appendix A.3. G € D,(¥). So, with wu, = —log(—F~ (1 —1/n)), v, = f(—un),
Fr(—etnos(=2)™) — G"(y,(—log(—x))"") — ®(—log(—z)) = —1/x = Hy,(x), x < —1, proving the
theorem. O

4. Comparison between p-max and e-max domains

The result below compares D,(.) and D(.) and shows that every df in a D,(.) necessarily belongs
to some D.(.) and that the converse is not always true. So, e-max stable laws attract more dfs than
the p-max stable laws. Proofs of results in the previous section and Theorem 6.2 in Appendix A.4. are
extensively used in the proof below and the proof is different from the one given in Mohan and Ravi (1993)
for Theorem 6.2 in Appendix A.4. Two dfs F and G are said to be tail equivalent if r(F) = r(G) and

i 1—-F(t)
t—r(F) 1-— G(t)
some df, then the other df also belongs to the same max domain with the same kind of normalization, see
for example, Resnick (1987). We use this result in the proofs below.

= A, for some constant A > 0, and in such a case, if one belongs to a max domain of

Theorem 4.1. Let F be a df.

(a) 82)?66%;{{{)1),?)7“(17) . } — F € D,(H,), r(F) = .

(b) FeD,(®), 1<r(F) <o < FeD.(Hi1), 1 <r(F) < o0.
(i) F € Dp(Hza), r(F) =1 _

(c) (ii) F € Dy(®), r(F) =1 } = F € Dc(Hz1), 7(F) = 1.

(d) FeD,(®), 0<r(F)<1 <= F €D.(H1), 0<r(F) <1

(e) Eiz)gee%}jf;)a)r(F) =0 } = F €D.(Hs1), r(F)=0.

(f) FeD,(¥), -1<r(F)<0 < F e€D.(Hs1), -1 <r(F)<0.
(i) F € Dp(Haa), 7(F) = -1 _

(g) (“) FeD ( 4) ( ) _1 } — F c DG(H471), T‘(F) = —1.

(h) F eD,(9), r(F) < -1 <= F € D.(Hy,), r(F) < —1.

(1) FeDy(Hzn), 1<r(F)<oo <= FeD(Uz4), 1<r(F)<o0.

() FeD,(Hsy), r(F) <1 = FeD.(Usa), 0<r(F)<1

(k) FeDp(Huia) —-1<r(F)<0 <= FeD(Usqn) —1<r(F)<0.

(1) F € Dp(Hya), 7(F) < -1 < F €Dc(Us,a), r(F) < -1
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Remark 4.2. Note that D.(U1,4) UD:(Us o) UDe(Us o) UDe(Uz,o) contain dfs which do not belong to any
of the Dy(-)'s
Proof of (a)(i): If X ~ F € Dp(Hi,) then by Theorem 6.1(i) in Appendix A.3., r(F) = oo and
Fr(zPr) — e (1082)™% "3 > 1, for some S, > 0. Defining ¥ = log(aV X) for some a, 0 < a < 1, we have
G asin (8) with r(G) =logr(F) =00 and G"(any + by) = F"(e®¥T0n) = F(ePn(e¥)%) — Hyo(e¥) =
®.(y), y >0, sothat G € D;(®,). Hence, from Theorem 6.2(i) in Appendix A.4., G € D,(P). Therefore,
as in the proof of converse part of Theorem 3.3, the df of e¢¥ = aV X belongs to D.(H; 1), and since
. PlavX >t
lim ————
i P(X > 1)

constants u, = log F~(1 — 1/n), v, = h(u,), where h(t) =

=1, trivially aVX and X are tail equivalent and we get F' € D.(H; 1) with norming

%F(et) tlog () 1= ( )ds completing the
proof.

Proof of (a)(ii): If X ~ F € D,(®) with r(F) = oo then F"(a,zf) — e V% 2z >0 for
some constants «, > 0,8, > 0. Defining G as in (8), nh—>H;o G"(Bny + logay,) = nh—>ngo F™(ay,(e¥)Pn) =
®(e¥) = Aly),y € R, and hence G € Dy(A) with 7(G) = log(r(F)) = oco. So, by Theorem 6.2(ii) in
Appendix A.4., G € D,(®) and as in the proof of converse part of Theorem 3.3, the df of ¥ = (aV X)
belongs to D(Hi,1) which implies that F € D.(Hy1) with w, =logF~ (1 —1/n), v, = h(u,), where

(0) = gy S s, proving () i)

Proof of (b): The proof of the necessity part of (b) is similar to that of (a)(ii) above and is omitted.

If X ~F €D, (H;) with 1< r(F)< oo then Fm(evn{log2)™) e=os®) ™ 1 5 1 for some
constants wu, > 0,v, > 0. Hence for some a,0<a <1, Y =log(aVX)~G with G asin (8) and
G™(upy®™) = F™(e"n¥™) = F(etn(108e)™) 5 e=1/¥ = ®(y),y > 0. So G € Dy(P), 0 < r(G) < .
Therefore, from Theorem 6.2(iii) in Appendix A.4., G € D;(A), 0 < 7(G) < oco. Hence from Proposition
1.1, the df of e¥ =aV X belongs to D,(®), 1 <r(F) < oo, and since aVX and X are tail equivalent,
the df of X belongs to D,(®), proving (b).

Proof of (c)(i): If X ~ F € Dy(Hz,) with 7(F) =1, then F"(2fr) — e~ (782" 0 < 2 < 1,
for some constants 3, > 0. Defining G as in (8), we have G"(8ny) = F"((e¥)’") — Han(e¥) =
U, (y),y <0, sothat G € Dy(¥,) with r(G) =log(r(F)) =0. Hence from Theorem 6.2(vi) in Appendix
A4., G € Dy(¥). So, as in the converse part of the proof of Theorem 3.6, the df of e¥ = (aV X)
belongs to D.(Hz1) and since aV X and X are tail equivalent, we have F € D.(H,;) with

—log F~(1—1/n), v, = h(—uy,), where h(t) = _%F(et) ftlogT(F) %(Es)d& proving (c)(i).

Proof of (¢)(it): As in the proof of (a) (ii) above, if X ~ F &€ Dy(®) with r(F) = 1, then
F(anzPr) — e V/* 1z > 0, for some constants «, > 0,8, > 0. Defining G as in (8), we have
G"(Bny + logay,) = F*(an(e¥)Pn) — ®(e¥) = A(y),y € R, and hence G € D;(A) With r(Q) =
log(r(F)) = 0. So, from Theorem 6.2(v) in Appendix A.4., G € D,(¥) so that the df of e¥ = (aV X)
belongs to D.(Hz1) as in the proof of converse part of Theorem 3.6, which 1mpheb that F € D.(Haz1)

).

with u, = —log F~(1 —1/n), v, = h(—u,), where h(t) = logr(F ﬁds proving (c)(i

F 1—F(et) J
Proof of (d): The proof of the necessity part of (d) is smular to that of (c¢)(ii) above and is omitted.
Now, if X ~ F € D.(Hz1), 0 < r(F) < 1, then F"(e~un(=lg®)™) 5 4 0 < x < 1, for

some norming constants u, > 0,v, > 0. Defining G as in (8) for some a,0 < a < r(F), we have

G (—tp(—y)'m) = Fr(e un(=0)") = Fr(e=un(=loge?)™) y o=(=loge’) — oy — [(y), y < 0, so that

G € D,(¥), with r(G) = log(r(F)) < 0. Hence from Theorem 6.2(iv) in Appendix A.4., G € Di(A).

From Proposition 1.1, this implies that the df of ¥ = aV X belongs to D,(®), 0 < r(F) < 1, proving

(d).

Proof of (e)(i): If X ~ F € Dy(Hz,) then r(F) =0 and F"(—a,(—z)) — e (~log(=z)™"
—1 <z <0, for some norming constants «, > 0, 3, > 0. Defining G asin (9), we have G"(8,y—log«,,)
F(—e Brvelogan) — Fr(—q, (e ¥)fr) = e~ (Tlos(=(=e"N)" 1 <« —¢¥ < 0, = ®,4(y), ¥y > 0. So
G € Di(®,) with r(G) = —log(—r(F')) = co. Hence from Theorem 6.2(i) in Appendix A.4., G € D,(®P)
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and as in the proof of converse part of Theorem 3.9, the df of X = —e™Y belongs to D.(Hs,1), proving
(©)(0).

Proof of (e)(ii): f X ~ F € D,(¥) with r(F) =0 then F"(—ay,(—z)’) — e, z < 0, for
some norming constants o, > 0,3, > 0. Defining G as in (9), G"(Bny — logay,) = F"(—e Prn¥elogan)
= F'(—an(e7¥)P) = e ¢’ = A(y), y € R. So, G € Dy(A) with r(G) = —log(—r(F)) = co. Hence
from Theorem 6.2(ii) in Appendix A.4., F' € D,(®) so that, as in the proof of converse part of Theorem
3.9, the df of —e™Y = X belongs to D.(Hs 1), proving (e)(ii).

Proof of (f): If X ~F € D,(¥) with —1 <r(F) <0 then proceeding as in the proof of e(ii), we have
G € Di(A) with 0 < r(G) < oo and hence from Theorem 6.2(iii) in Appendix A4., G € D,(®) so that
the df of —e™¥ = X belongs to D.(Hs31).

If X ~F € D,(Hs;) with —1 < r(F) < 0 then Fn(—e un(Zlos(=2)™) _ e=(-log(-2)) —
Hs1(z), —1 <2 <0, for some norming constants u, > 0,v, > 0. Defining G asin (9), G"(upy*’") =
Fr(—eun@') = Fr(—gun(=logl=e™)"™y 4 o=(=loge™)™" — o=1/y — $(y), y > 0, so that G € D,(®)
with 7(G) = —log(—r(F)), 0 < r(G) < oo. Hence from Theorem 6.2(iii) in Appendix A.4., G € D;(A), 0 <
7(G) < 00, and so from Proposition 1.1, the df of —e™ = X belongs to D,(¥), —1 < r(F) < 0, proving

(f).

Proof of (g)(i): If X ~ F € Dy(Hy,) with r(F) = —1 then F"(—a,(—x)%) — e~ (os(=2)" "o <
—1, for some norming constants «, > 0,8, > 0. Defining G as in (9), we have G"(8,y —
loga,) = Fr(—e Brvelosan) — Fr(—q, (e ¥)P) — e~(oale™)" " _e=v <« 1 = U, (y), y < 0. So,
G € Di(V,), r(G) = —log(—r(F)) = 0. Hence from Theorem 6.2(vi) in Appendix A4., G € D,(¥) so
that as in the proof of converse part of Theorem 3.12, the df of —e™Y = X belongs to D.(Hy 1), proving
(2)(0).

Proof of (g)(ii) and direct part of (h): If X ~ F € D,(¥), r(F) < —1, then proceeding as in the proof
of (e)(ii), G € Di(A), r(G) <0 and hence from Theorem 6.2(iv) and (v) in Appendix A.4., G € D,(¥).
So, from the proof of converse part of Theorem 3.12, the df of —e~Y = X belongs to D.(Hys 1), proving
(g)(ii) and the direct part of (h).

Proof of converse part of (h): If X ~ F € D.(Hy,) with r(F) < —1 then F"(—etn(oglzh)™)
e~los(=®) = H,,(x), » < —1, for some norming constants wu, > 0,v, > 0. Defining G as in (9),
G™(—ty(—y)n) = F*(—etn(=0)") = Fr(—eun(logl=e7"D"™)  e=loge™ — 0¥ — Y(y), y < 0, so that G €
Dp(¥), 7(G) = —log(—r(F)) < 0. Hence, from Theorem 6.2(iv) in Appendix A.4., G € Di(A), r(G) <0
and so by Proposition 1.1, the df of —e™ = X belongs to D,(¥), r(F) < —1, proving the converse part
of (h).

Proof of (i): If X ~ F € Dy(Ha,q), r(F) > 1, then proceeding as in the proof of (¢)(i), G € D;(¥,)
with r(G) > 0 and hence from Theorem 6.2(vii) in Appendix A.4., G € Dy(Hs,4). So, as in the proof of
converse part of Theorem 3.2, the df of e¥ = (aV X) and hence that of X, belongs to D.(Us.q).

Conversely, if X ~ F € D.(Uso) with 1 < 7(F) < oo then Fm(etn(l08®)™) — e=(~loglogz)” 1 <
x < e, for some norming constants wu, > 0,v, > 0. Defining G as in (8) for some a,0 < a < 1,
G™(upa®) = Fr(em®™) = Fr(ewn(08e™)™) & Hy (), 0 < x < 1. Hence G € D,(Hs,). From
Theorem 6.2(vii) in Appendix A.4., G € Dy(¥,) with r(G) =logr(F) > 0 which implies that the df of
e¥ =aV X belongs to Dy(Hz,,) by Proposition 1.1. Since aV X and X are tail equivalent, we have
F e D,(Ha,), r(F) > 1, proving (i).

Proof of (j): If X ~ F € Dy(Hy,) with r(F) < 1, then proceeding as in the proof of (c)(i),
G € D)(¥,) with r(G) < 0 and hence from Theorem 6.2(viii) in Appendix A.4., G € D,(Hy,). So, as
in the proof of converse part of Theorem 3.5, the df of e¥ = (a VvV X) and hence that of X, belongs to
De(Us,a)-

Conversely, if X ~ F € D.(Uyo) with 0 < 7(F) <1 then F7(evnllogzlsignllogz)y _, o=(logllogz)* " () <
x < 1/e, for some norming constants u, > 0,v, > 0. Defining G as in (8) for some a, 0 < a < r(F),
G~y (—x)'n) = FP(eun(2)"") = Fr(e~un(=loge)™) 5 [, (), © < —1, so that G € Dy(Hya)-
Hence, from Theorem 6.2(viii) in Appendix A.4., G € Dy(¥,) with r(G) =logr(F) < 0 so that the df of
e¥ =aV X and hence that of X belongs to D,(Hz,) with r(F) < 1, proving (j).

Proof of (k): If X ~F € Dyp(Hso) with —1 < 7(F) < 0, then proceeding as in the proof of g(i), we
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have G € D;(¥,) with 0 < r(G) < 0. Hence, from Theorem 6.2 (vii) in Appendix A.4., G € D,(Haz,q)
so that, as in the proof of converse part of Theorem 3.8, the df of —e™Y = X belongs to De(Us,a)-

If X~FcD,(Usy) with —1 <r(F) <0, then F7"(—etnlloglzll"sign(loglzl)) _ o=(~log(~log(=z))*
—1 <z < —1/e, for some norming constants w, > 0,v, > 0. Defining G as in (9), G"(upz'") =
Fr(—emun®™) = Fr(—e un(=log(=(=eMN™)  e=(log2)® — [, (), 0 < < 1, so that G €
Dp(Hsza), 7(G) = —log(—r(F)), 0 < r(G) < oo. Hence, from Theorem 6.2(vii) in Appendix A.4., G €
Dy(¥y), r(G) >0, and from Proposition 1.1, the df of X = —e™ belongs to D,(Hy,), —1 < 7(F) <0,
proving (k).

Proof of (1): If X ~ F € Dy(Hy,o) with r(F) < —1 then proceeding as in the proof of g(i), we have
G € D;(¥,) with r(G) <0 and hence from Theorem 6.2(viii) in Appendix A.4., G € Dp(Hyo). So, as in
the proof of Theorem 3.11, the df of —e™Y = X belongs to D.(Us o).

If X~ F¢€D.(Us,y) with r(F) < —1 then F7(—eun(os(=2))"") _ o=(logllog(=2))" "5 < —¢ for some
norming constants wu, > 0,v, > 0. Defining G as in (9), G"(—u,(—y)") = F*(—eun(=9") =
Fr(—eunllos(=(=e7)))"™) o e=(os(=v))™ = H, (y),y < —1, and G € D,(Hy,) with r(G) =
—log(—r(F)) < 0. From the Theorem 6.2(viii) in Appendix A4., G € Dy(¥,), r(G) < 0, and hence
from Proposition 1.1, the df of —e™¥ = X belongs to D,(Hy.a), 7(F) < —1, proving (1) and the theorem.
|

5. Examples

The following examples give dfs belonging to the max domains of attraction of the e-max stable laws
and these can be verified directly by using (5). Note that D;(.) C Dp(.) C De(.). In the discussion below,
a=1.

(i) Fi(z) =1 — (loglogz)™!, x > e°, belongs to D.(U; o) with u, =1 and v, = n. But F & D,(-), see,
Mohan and Ravi (1993).

(i) Fa(z) = 1 — (—log(—logz))~', e7'/¢ < x < 1, belongs to D.(Us ) with u,, = 1 and v,, = n. But
F> € Dy(+), asif at all F, belongs to any of these domains then Fy € D;(V)UD;(A)UD,(Ha,o)UD,(P), as
r(F3) = 1. But, from Theorem 2.1.2 of Galambos (1978), F; & D;(¥) and hence from Theorem 6.2(vii)
in Appendix A.4., Fy & D,(Hs,o). Further from Theorem 2.1.3 of Galambos (1978), Fy ¢ D;(A), and
hence from Theorem 6.2(iii) in Appendix A.4., F; & D,(®).

(iii) F3(z) = 1 — (log(—log(—x))~, —e=¢ < x < 0, belongs to D,(Us ) with u,, = 1 and v,, = n. But
F5 € D,(+), as if at all F5 belongs to any of these domains then F5 € Dy (¥)UD;(A)UD,(Hs o) UD,(T),
as r(F3) = 0. But, from Theorem 2.1.2 of Galambos (1978), F5 ¢ D;(¥) and from Theorem 6.1(iii)
in Appendix A.3., F5 ¢ D,(H3 ) and also from Theorem 2.1.3 of Galambos (1978), F5 ¢ D;(A), and
hence from Theorem 6.2(iv) in Appendix A.4., F3 & D,().

(iv) Fy(z) =1 — (—loglog(—z))~t, —el/¢ < z < —1, belongs to D.(Ur,o) with u, = 1 and v, = n. But
Fy ¢ Dp(-), as if at all F; belongs to any of these domains then Fy € Dy (¥)UD;(A)UD,(Hy o) UD,(T),
as r(Fy) = —1. But, from Theorem 2.1.2 of Galambos (1978), Fy ¢ D;(¥) and hence from Theorem
6.2(viii) in Appendix A4., F5 ¢ Dy(Hy4o) and also from Theorem 2.1.3 of Galambos (1978), F» &
D;(A), and hence from Theorem 6.2(iv) in Appendix A.4., Fy & D,(V).

(v) Fs(z) =1 — e~(Uoglog2)® 4 > ¢ helongs to Do(Hy 1), with u, = V8" and v, = (2/Togn)~".
Note that F5 & D,(H1,q) UDy(®P). For, if F5(z) € D,(Hy,q) then from the proof of a(i) of Theorem
4.1, Gs(y) = Fs(e¥) = 1 — e~ (82 2 > 1 € Dy(D,), a contradiction established in Mohan and
Ravi (1993). Also, if F5 € D,(®) then from the proof of c(ii) of Theorem 4.1, G5 € D;(A), again a
contradiction established in Mohan and Ravi (1993).

(vi) Fs(z) =1 — ¢~ (= log(~logx))* 1/e < z < 1, belongs to D.(Hs,1), with u, = eVs(/") and v, =
(24/log(1/n))~t. Note that Fg & Dp(Hz.4) U D,(®). For, if Fs € Dy(Hz,4) then from the proof of c(i)
of Theorem 4.1, Gg¢(y) = Fg(e¥) =1 — e_(_log(_”’))z, —1<x<0e€D(¥,), a contradiction which is
easy to establish. Also, if Fg € D,(®), then from the proof of c(ii) of Theorem 4.1, G¢ € D;(A), again
a contradiction which is easy to establish.
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(vii) Fr(z) = 1 — e~ (ee(=log(=2))* " _1/¢ < 2 < 0, belongs to De(Hs,), with u, = V8" and v, =
(2y/logn)~!. Note that F; & D,(Hs o) UD,(V). For, if F7(z) € D,(Hs,4), then from the proof of e(i)
of Theorem 4.1, G7(y) = Fy(—e %) = 1 — ¢~ 1082)° 2 > 1 € Dy(W,), a contradiction established in
Mohan and Ravi (1993). Also, if F; € D,(¥), then from the proof of e(ii) of Theorem 4.1, G7 € D;(A),
a contradiction established in Mohan and Ravi (1993).

(viil) Fg(z) =1— e~(Floglog(=0))” " _¢ < 2 < —1 belongs to De(Hyy), with u, = eV1e/™) and v, =
(24/log(1/n))~t. Note that Fg & D,(Hy o) UD,(¥). For, if Fy € D,y(Hy.o), then from the proof of g(i)
of Theorem 4.1, Gs(y) = Fs(—e™¥) = 1 — e~ (71os(=2))* ' _1 < 2 < 0, € D;(¥,), a contradiction which
is easy to establish. Also, if Fy € D,(¥), then from the proof of g(ii) of Theorem 4.1, Gs € D;(A), a
contradiction which is easy to establish.

(ix) The following examples pertain to some standard dfs and can be deduced using Theorem 4.1 and
Theorem 6.2 in Appendix A.4.

- logl;):g/%g@r? b, = (v2logn)~!
so that (1) holds; F' € D,(®) with o, = by, fn = Z—n so that (2) holds and F' € D.(H;,1) with
Up, = Bn, Vn = @y so that (5) holds. !

(b) The uniform df over (0,1) F' € D;(¥,) with a, = 1/n, b, = 1 so that (1) holds; F' € D,(Hsq)
with o, = by, By = Z—n so that (2) holds and F' € D.(Hs 1) with u,, = By, v, = oy, so that (5)
holds. !

(c) The standard exponential df F' € D;(A) with a,, = 1, b, = logn so that (1) holds; F' € D,(P)
with o, = by, By = Z—n so that (2) holds and F' € D.(H;,1) with u, = B, vp, = ay, so that (5)
holds. !

(d) The Cauchy df F € Dy(®,) with a,, = %, b, = 0 so that (1) holds; F' € D,(®) with o, = ap,

(a) The standard normal df F' € D;(A) with a,, = /2logn

1
Br, = — so that (2) holds and F' € D.(H1,1) with u,, = 3, v, = v, so that (5) holds.
@
log 47 + loglogn

bn
— b, = 14 4/21 —
v2logn exp(l + osn 2v/2logn ) s
that (1) holds; F € D,(®) with «,, = by, 8, = Z—n so that (2) holds and F € D.(H; 1) with
Up, = Pn, U = ay, so that (5) holds. !

(e) The lognormal df F' € D;(A) with ay, =

1
(f) The Gamma (a, 8) df F' € Dy(A) with a,, =1/8, b, = B(logn + (e — 1) loglogn — log T'(«x)) so
that (1) holds; F' € Dp(®) with o, = an, fn = Z—n so that (2) holds and F' € D.(H; 1) with
Up, = Bn, Vn = ay so that (5) holds. "
] -1 1/a
(¢) The loggamma(a, 3) df F € Dy(®,) with a, = (n(OFg(Z))> , by = 0 so that (1) holds;

F € D,(®) with o, = ap, Br =
that (5) holds.

(h) The Pareto df F € D;(®,) with a, = n'/%, b, = 0 so that (1) holds; F' € D,(®) with oy, = ay,
Bn =1/« so that (2) holds and F € D.(Hj 1) with u, = B, v, = a, so that (5) holds.

so that (2) holds and F' € D.(H; 1) with u, = By, vn, = ay S0

Q| =
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6. Appendix

A.1. The l-max stable laws (Galambos, 1978) For parameter « > 0, the following are the different
types of I-max stable laws:

the Fréchet law, ®,(z) = exp{—2z7%}, 0<u;
the Weibull law, W,(z) = exp{—(—x)“}, z<0;
and the Gumbel law, A(x) = exp{—exp(—z)}, z €R.

A.2. The p-max stable laws (Mohan and Ravi, 1993) For parameter « > 0, the following are the
different p-types of p-max stable laws:

the log-Fréchet law, H1 o(2) exp{—(logz)™%}, 1< u;
the log-Weibull law, Hj o(x) = exp{—(—logz)*}, 0<x<1;
the standard Fréchet law, ®(z) = &q(x), ¢ € R;
the inverse log-Fréchet law, Hs o(x) = exp{—(—log(—x))"%}, —-1<z<0;
the inverse log-Weibull law, Hy o(z) = exp{—(log(—=x))*}, =< -1,
and the standard Weibull law, ¥(z) = Uy(z), z € R.
A 3. Criteria for a df to belong to D,(.) ( Mohan and Ravi, 1993)
Theorem 6.1. o
(i) Adf F € Dy(Hyo) iff r(F) = o0 and hm 11__FF(()) =2~% x> 0. And the norming constants

may be chosen as a,, = 1 and 5, = 1ogF (1- 1/n)

Fe —x/t
(ii) A df F € Dy(Ha o) iff 0 < r(F) < oo and hm . ETE ; 1/t§ = 2%, & > 0. And the norming
—o0 1 — F(r(F)e~
constants may be chosen as a,, = r(F) (md Brn =logr(F) —log F~ (1 —1/n).
1—F tx
(iti)) A df F € Dy(Hs ) iff r(F) = 0 and hm 1F((et)) = z7% x > 0. And the norming
— e
constants may be chosen as o, =1 and ﬁn = log( F~(1-1/n)).
F x/t
() A df F' € Dp(Haa) iff 7(F) < 0 and tl_i) ((Fizl/t; = 2% x > 0. And the norming

constants may be chosen as o, = —r(F) and ﬂn log F= (1 —1/n) —logr(F).
1 — F(te®
(v) A df F € Dy(®) iff r(F) > 0 and tTlir(%) 1—(F€(t)) =e %, x>0, for some positive function
1 rF) 1 —F(x)
1—F(t) 7t x

1 ry 1 —F .
it holds with the choice f(t) = ——— (F) 7(35) dx. And the norming constants may be
1—F(t) 7t
— x

chosen as ap, = F~ (1 —1/n) and B, = f(ay).
1 — F(te®/®)

(1) A df F € Dy(0) i (F) <0 ond lim =00 = e, >0, for some positive function. f

and if this holds for some positive function f then _1—717@) tr(F) 1—F(
1

with the choice f(t) = — 1= F) ftT(F) 171;(@ dx. And the norming constants may be chosen as
ap=—-F"(1-1/n) and B, = f(—aw).
A 4. Comparison of Dj(.) and D,(.) domains (Mohan and Ravi, 1993)

Theorem 6.2. Let F be a df.
(1) If F € Di(®,) with norming constants a, > 0,b, € R, then F € D,(®) with a, = ay, and
Bn =1/c.

f and if this holds for some positive function f then

dr < oo, and

2) dr < oo, and it holds
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(i) If »(F) =00 and F € Di(A) with norming constants a, > 0,b, € R, then F € D,(®) with

an

an = b, and B, = —

(i) If 0 <r(F) < oo and F € Di(A) with norming constants a, > 0,b, € R, then F € D,(P)
with a, = b, and B, = Z—n. Conversely, if r(F) < oo and F € D,(®) with norming constants
an > 0,58, >0, then F € Dj(A) with a,, = apfn, by = an.

() If r(F) <0 and F € Dy(A) with norming constants a, > 0,b, € R, then F € D,(¥) with

ap = —b, and B, = —%. Conversely, if r(F) <0 and F € D,(¥) with norming constants

an > 0,08, >0, then F g Di(A) with an, = anBn, bp = —au,.
(v) If r(F)=0 and F € Di(A) with norming constants a,, > 0,b, € R, then F € D,(¥) with

n

an = —b, and B, = 3
(vi) If 7(F) =0 and F € nDl(\Ifa) with norming constants a, > 0,b, € R, then F € D,(¥) with
an =a, and B, = —1/a.

(vii) If »(F) >0 and F € Dy(V,) with norming constants a,, > 0,b, € R, then F € D,(Ha ) with
an = by and B, = b—n Conversely, if F € Dy(Ha,) with norming constants a, > 0, B, > 0,
then F € Di(¥,) wah n = P, by = oy,

(viii) If r(F) <0 and F € D)(V,) with norming constants a, > 0,b, € R, then F € D,(Hy.)
with o,, = —b, and B, = —a—n. Conversely, if F € Dy(Hyo) with norming constants o, >

by
0,8, >0, then F € Dy(V,) with an = nBn, by = —au,.
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