Efficient Estimation Capacity Index for 3.2^{n-m} Fractional Factorial Designs

B Tarapara ${ }^{\text {a }}$, J Divecha ${ }^{\text {b }}$
${ }^{a}$ SEMCOM College, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.
${ }^{b}$ Department of Statistics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.

Abstract

Among the irregular fractions of 2^{n} factorials, the $3 / 2^{m}$ fractions have greater practical value because their alias patterns are known. Based on alias pattern, the variances and covariances of all estimable factorial effects can be known and hence also A-efficiency of design. This paper introduces an efficient estimation capacity (EEC) index to assess designs of $3 / 2^{m}$ fraction of 2^{n} factorial. It is simply a count generated from the alias pattern. It serves as a surrogate for finding the most A-efficient design among the designs of same runs. Higher the index, higher the A-efficiency, that is lower the variance and covariance of 3.2^{n-m} design for interaction model. This index has opened up comparison among 3.2^{n-m} fractions of variable resolutions between resolutions II to IV. The role of EEC index as compared to other assessment criteria for irregular factorial designs namely A-, df-efficiency, generalized resolution and minimum moment aberration has been discussed.

1. Introduction

There are many situations in which an experimenter must estimate the important effects and interactions of a symmetrical factorial experiment with as few trials as possible. There are instances where say, all twofactor interactions are important and a fractional replicate design, which permits orthogonal estimates of all main effects (MEs) and two-factor interactions (TFIs) requires more trials than one can afford to make. If the experimenter is restricted to designs of the type represented by a $1 / 2^{m}$ fraction of the 2^{n} experiment, he must either abandon the investigation or choose a more highly fractionated design, and assume that several of the TFIs are negligible.

Consider, for example, a situation where it is desirable to estimate the MEs and TFIs in an experiment involving six factors, each having two levels in less than 28 trials. It is known that a $1 / 2$ replicate of the 2^{6} experiment defined by at least five factors interaction, as generator allows uncorrelated estimates of all MEs and TFIs, when three-factor and higher order interactions are negligible. However, this design requires 32 trials, exceeding the maximum number which can be made. A higher order fraction $1 / 4$ replicate of the 2^{6} experiment having 16 runs allows uncorrelated estimates of all MEs and half of the TFIs assuming half of the TFIs as negligible. The number of TFIs to be considered negligible would increase with the increase in the number of factors. For more details, refer Chen and Cheng (2004), who developed estimation index indicating estimation capacity of a regular fractional factorial designs.

[^0]It seems reasonable to inquire whether a design can be constructed with 24 runs which will yield information on all MEs and TFIs although partially correlated. A $3 / 2^{3}$ replicate of the 2^{6} factorial is such a design. Such irregular fractions were considered long back by Addelman (1961), John(1961, 1962) and Patel (1963), but it still possesses potential to explore some novelties. Addelman (1961) showed that the 3.2^{n-m} replicate designs introduce correlations between some of the estimates of up to $1 / 2$, although these correlations do not affect individual tests on the parameters. Patel (1963) showed that 3.2^{n-m} factorial are partially duplicated designs and can be studied and assessed through 2^{n-m} factorial alias sets. Authors/ Researchers have restricted discussion to designs of resolution III and higher, fearing loss of orthogonality in estimation of MEs. However, 3.2^{n-m} design based on defining contrasts containing a ME or TFI do yield estimation of all the MEs and TFIs as equally as a resolution III design, in fact with minimum variances and covariances.

One can base selection of a good 3.2^{n-m} design on answers to one or more of the following practical questions.

1. Does there exist a design, may be of resolution less than three that can estimate all the MEs and TFIs?
2. Does there exist an economical design suitable for MEs and TFIs model?
3. Does there exist an irregular design for MEs and TFIs model that allows orthogonal estimation of few MEs?

Since factorial estimates from irregular designs are correlated, one must focus on reducing the variances and covariances of the estimates. Other forms of two-level irregular designs studied for estimation of MEs and TFIs model by Rechtschaffner (1967), Tobias (1996), Mee (2004) and Tang and Zhou (2009, 2013) are useful but for them alias patterns are hardly known.

Many criteria have been developed to characterize irregular fractions of two level factorials, but $3 / 2^{m}$ fraction of 2^{n} has not been focused. A criterion, df-efficiency proposed by Daniel (1956) measures how many more factorial effects can be estimated, thus higher the df-efficiency, higher the rank of design information matrix. Another criterion, A-efficiency measures how far average variance and covariance are minimum thus, higher the A-efficiency lower the value of diagonal and off-diagonal elements of variance-covariance matrix (Kuhfeld, 1997). This A-efficiency also indicates the amount of orthogonality in a design. A formula of A-efficiency specially for 3.2^{n-m} designs was given, Mee (2004). One more indicator is the generalized resolution proposed by Deng and Tang (1999) for irregular designs. It is resolution of a design plus, a less than unity value indicating the minimum percentage of runs utilized in estimation of a factorial effect. Its value means higher the use of design runs in estimation of all factorial effects. However, there are two problems with this criteria, first, there exist several designs of equal generalized resolution, and second, it is incompetent to asses the amount of non-orthogonality (confounding) among the contrasts of factorial effects of interest, because it is defined on the basis of design matrix and not the information matrix. Consequently, designs with equal generalized resolution value can have different A-efficiencies. Recently introduced, minimum moment aberration (MMA) criterion by Xu (2003) can rank irregular fractions of the same generalized resolution in terms of improved estimability of MEs than TFIs but, it cannot assess the amount of partial confounding among these factorial effects. Alike generalized resolution, MMA protects MEs from getting confounded with another ME, but does not protect MEs from getting confounded with two TFIs, leaving behind only $1 / 3$ orthogonal runs used exclusively for its estimation. All the above criteria are suitable for assessing Plackett Burman and saturated type of irregular designs, which are respectively orthogonal and non-orthogonal designs, but not for 3.2^{n-m} fractions as they do not make use of the alias pattern.

This article introduces an index for selection of the most A-efficient 3.2^{n-m} design suitable for interaction model, simply based on alias pattern. This new criterion called efficient estimation capacity (EEC) index assesses 3.2^{n-m} designs and demonstrates that high EEC indexed design would estimate MEs and TFIs with minimum variance and covariance that is, high A-efficiency. A design with lower EEC index would be df-efficient, and a design with moderate EEC index would be MMA design. Further it is showed that, some 3.2^{n-m} designs having resolution III or less, possess special properties and provide two new 3.2^{n-m} designs for $(\mathrm{n}, \mathrm{m})=(5,2),(6,3)$ of practical importance. Comparison of designs with relevant saturated designs is
given.
The article is organized in four sections. Section 2 narrates some basics of estimation of factorial effects which serves as an essential basis for the definition and explanation of the new index in Section 3. EEC index and its role in selection of good 3.2^{n-m} design is exhaustively discussed for 5 and 6 factors and verified for 7,8 and 9 factors. Characterization of 24 run designs in 5 and 6 factors is given in Section 4. Treatment combinations and variances-covariances of estimable factorial effects of all 24 runs designs in 5 and 6 factors and alias sets of 5 to 9 factors suitable for interaction model are given in Appendix.

2. Estimation of factorial effects of 3.2^{n-m} irregular fractions

2.1. 3.2^{n-m} design

As commonly done, firstly, a 2^{n-m} design generator or defining contrast is chosen. Then combining three distinct 2^{n-m} designs by the generator gives a 3.2^{n-m} design. The choice of 2^{n-m} design generator is instrumental in determining the resolution and the corresponding alias set is instrumental in determining the efficiency with which the MEs and TFIs would be estimable.

2.2. The model and estimation of factorial effects

Let the observations resulting from a 3.2^{n-m} fractional factorial experiment are expressed as,

$$
\begin{equation*}
Y=X \beta+\varepsilon \tag{1}
\end{equation*}
$$

Where Y is a vector of observation, X is the coefficient matrix for β-vector consisting of an intercept term, MEs and all estimable TFIs. Accordingly, we consider X matrix as juxtaposed matrix of a unity column representing general mean effect, 3.2^{n-m} design in ± 1 levels representing ME contrasts for n factors and two way products of n columns resulting in $n(n-1) / 2$ columns of TFIs. The design matrix X is of order $3.2^{n-m} \times n_{e}, n_{e}$ denotes the number of estimable factorial effects and ε is vector of independent normally distributed errors with mean zero and common variance σ^{2}.

Similar to Addelman(1961), the design matrix X is expressed such that the number of MEs and TFIs aliased in an alias relation form a block of r columns, $r=1,2$ or 3 . Note that, r must not be more than 3 for $X^{\prime} X$ to be invertible, because additional number of effects are unavoidably fully confounded. Then the information matrix $X^{\prime} X$ consists of 2^{n-m} blocks of the form $2^{n-m+2} I_{r}-2^{n-m} J_{r}$ and $\left(X^{\prime} X\right)^{-1}$ consists of 2^{n-m} blocks of the form,

$$
\begin{equation*}
\frac{1}{2^{n-m+2}}\left[I_{r}+\frac{1}{4-r} J_{r}\right] \tag{2}
\end{equation*}
$$

of order r, where I_{r} is an identity matrix of order r and J_{r} is a unity matrix of 1 's of order r. Then estimate of β in (1) is,

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

with variance covariance matrix

$$
\begin{equation*}
v(\hat{\beta})=\left(X^{\prime} X\right)^{-1} \sigma^{2} \tag{3}
\end{equation*}
$$

In particular, using (2) and (3), the variance of i-th $\left(i=1, \ldots, n_{e}\right)$ model term and covariance between i-th and j -th $\left(i \neq j=1, \ldots, n_{e}\right)$ model terms for factorial effects appearing in blocks of order $r, r=1,2,3$ are given by,

$$
\begin{align*}
& \operatorname{Var}\left(\hat{\beta}_{i}\right)= \begin{cases}3 \sigma^{2} / 2^{n-m+3}, & \text { if } \mathrm{r}=1,2 \\
4 \sigma^{2} / 2^{n-m+3}, & \text { if } \mathrm{r}=3\end{cases} \tag{4}\\
& \operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)= \begin{cases}0, & \text { if } \mathrm{r}=1 ; \\
\sigma^{2} / 2^{n-m+3}, & \text { if } \mathrm{r}=2 ; \\
2 \sigma^{2} / 2^{n-m+3}, & \text { if } \mathrm{r}=3\end{cases} \tag{5}
\end{align*}
$$

A $1 / \mathrm{m}$ replicate of a 2^{n} experiment will allow uncorrelated estimates of all or some MEs and TFIs when the three and higher factor interactions are negligible with variances $\sigma^{2} / 2^{n-m-2}$. In comparison, a 3.2^{n-m} replicate design results in slight correlated estimates of all MEs and TFIs having smaller variance, variance is at most $\sigma^{2} / 2^{n-m-1}$. Specific 3.2^{n-m} designs permit uncorrelated estimate of a few factorial effects, one such design exist for two level experiments in 5 - and 6 -factors.

3. EEC index for 3.2^{n-m} irregular fractions

Let, n_{r}^{d} denote the number of MEs and TFIs in blocks of order $r, r=1,2,3, n_{12}^{d}$ stands for $n_{1}^{d}+n_{2}^{d}$ and $\sigma_{1}^{2}=\left(2^{n-m+3}\right)^{-1} \sigma^{2}$. Then from variances in (4), the total variance of a 3.2^{n-m} design d for model (1) is given by,

$$
\begin{equation*}
V(d)=\left(3 n_{12}^{d}+4 n_{3}^{d}\right) \sigma_{1}^{2} \tag{6}
\end{equation*}
$$

Similarly using (5), the total covariance of a 3.2^{n-m} design d is given by,

$$
\begin{equation*}
\operatorname{Cov}(d)=\left(n_{2}^{d}+2 n_{3}^{d}\right) \sigma_{1}^{2} \tag{7}
\end{equation*}
$$

Theorem 1: Let d_{1} and d_{2} be two 3.2^{n-m} designs with number of estimable factorial effects $n_{e}^{d_{1}}$ and $n_{e}^{d_{2}}$ respectively, then $V\left(d_{1}\right)=V\left(d_{2}\right)+\left[4 m_{d}-m_{12}\right] \sigma_{1}^{2}$.
Proof: Let m_{d}, m_{12} and m_{3} defined as $m_{d}=n_{e}^{d_{1}}-n_{e}^{d_{2}}, m_{2}=n_{2}^{d_{1}}-n_{2}^{d_{2}}, m_{12}=n_{12}^{d_{1}}-n_{12}^{d_{2}}, m_{3}=n_{3}^{d_{1}}-n_{3}^{d_{2}}$, denote the differences of number of estimable factorial effects between two comparable designs d_{1} and d_{2} respectively, in whole design, in blocks of order one or two and in blocks of order three. From (6),

$$
\begin{align*}
V\left(d_{1}\right) & =\left(3 n_{12}^{d_{1}}+4 n_{3}^{d_{1}}\right) \sigma_{1}^{2} \\
& =\left[3\left(m_{12}+n_{12}^{d_{2}}\right)+4\left(m_{3}+n_{3}^{d_{2}}\right)\right] \sigma_{1}^{2} \\
& =\left[3 n_{12}^{d_{1}}+4 n_{3}^{d_{2}}+3 m_{12}+4\left(m_{d}-m_{12}\right)\right] \sigma_{1}^{2} \\
V\left(d_{1}\right) & =V\left(d_{2}\right)+\left[4 m_{d}-m_{12}\right] \sigma_{1}^{2} \tag{8}
\end{align*}
$$

Corollary 1: Let d_{1} and d_{2} be two 3.2^{n-m} designs. If $n_{e}^{d_{1}}=n_{e}^{d_{2}}$ and $n_{12}^{d_{1}}>n_{12}^{d_{2}}$ then $V\left(d_{1}\right)<V\left(d_{2}\right)$.
Result holds from (8) because $m_{d}=0$ and $m_{12}>0$.
Corollary 2: Let d_{1} and d_{2} be two 3.2^{n-m} designs. If $n_{e}^{d_{1}}<n_{e}^{d_{2}}$ and $n_{12}^{d_{1}} \geq n_{12}^{d_{2}}$ then $V\left(d_{1}\right)<V\left(d_{2}\right)$.
Result holds from (8) because $m_{d}<0$ and $m_{12} \geq 0$.
Corollary 3: Let d_{1} and d_{2} be two 3.2^{n-m} designs. If $n_{e}^{d_{1}}>n_{e}^{d_{2}}$ and $n_{12}^{d_{1}}>4 m_{d}+n_{12}^{d_{2}}$ then $V\left(d_{1}\right)<V\left(d_{2}\right)$. Result holds from (8) because $m_{12}>4 m_{d}$. However, the condition in Corollary 3 is nonexisting in practice. Following the Corollary 2 , switching d_{1} with d_{2} we get that design with greater n_{12}^{d} value will have smaller variance. Similar results also hold among total covariances of 3.2^{n-m} designs.
Theorem 2: Let d_{1} and d_{2} be two 3.2^{n-m} designs with number of estimable factorial effects $n_{e}^{d_{1}}$ and $n_{e}^{d_{2}}$ respectively, then $\operatorname{Cov}\left(d_{1}\right)=\operatorname{Cov}\left(d_{2}\right)+\left[2 m_{d}-m_{2}\right] \sigma_{1}^{2}$.
Proof: As above using (7) and $n_{12}^{d}=n_{2}^{d}$.
Above theorems and corollaries imply that variance and covariance of 3.2^{n-m} designs are decreasing function of n_{12}^{d}, higher the n_{12}^{d} value, lower the total variance and covariance. Equivalent trend is followed by the design average variance and covariance because n_{e}^{d} values for a class of 3.2^{n-m} designs do not differ greatly. Hence, we define,

$$
\begin{equation*}
\text { EEC Index }=n_{12}^{d} \tag{9}
\end{equation*}
$$

EEC rank $=1$ for design d^{*} if $n_{12}^{d^{*}}=\max _{d}\left(n_{12}^{d}\right)$. EEC ranks all designs and are given in descending order of their EEC index values.

Use of EEC index is illustrated below for 3.2^{n-m} designs listed in Table 1. Table 1 shows generators for construction of $3.2^{5-2}, 3.2^{6-3}$ and 3.2^{7-4} irregular fractional factorial designs suitable for MEs and TFIs model, along with counts and list of the estimable MEs and TFIs, and counts of paired aliases and triple aliases.

Example 1: Consider designs d_{1}^{5} and d_{3}^{5} shown in Table 1. For these designs $n_{e}^{d_{1}}=n_{e}^{d_{3}}=16$, EEC index of $d_{1}=n_{12}^{d_{1}}=16>$ EEC index of $d_{3}=n_{12}^{d_{3}}=13$ and $n_{3}^{d_{3}}=3$. This illustrates Corollary 1 and that design d_{1} is A-efficient than d_{3} because, using (6), $V\left(d_{1}\right)=48 \sigma_{1}^{2}=0.75 \sigma^{2}<V\left(d_{3}\right)=51 \sigma_{1}^{2}=0.80 \sigma^{2}$, also average $V\left(d_{1}\right)=0.0469 \sigma^{2}<$ average $V\left(d_{3}\right)=0.0498 \sigma^{2}$, using (7) $\operatorname{Cov}\left(d_{1}\right)=16 \sigma_{1}^{2}=0.25 \sigma^{2}<\operatorname{Cov}\left(d_{3}\right)=19 \sigma_{1}^{2}=$ $0.28 \sigma^{2}$, average $\operatorname{Cov}\left(d_{1}\right)=0.0156 \sigma^{2}<$ average $\operatorname{Cov}\left(d_{3}\right)=0.0176 \sigma^{2}$ and A-efficiency of $d_{1}=88.89 \%>$ A-efficiency of $d_{3}=81.93 \%$.
Example 2: Consider designs d_{1}^{6} and d_{2}^{6} shown in Table 1. For these designs $n_{e}^{d_{1}}=18<n_{e}^{d_{2}}=19$, EEC index of $d_{1}=n_{12}^{d_{1}}=12>$ EEC index of $d_{2}=n_{12}^{d_{2}}=10$ and $n_{3}^{d_{1}}=6, n_{3}^{d_{2}}=9$. This illustrates Corollary 2 and that design d_{1} is A-efficient than d_{2} because, using (6), $V\left(d_{1}\right)=0.9375 \sigma^{2}<V\left(d_{2}\right)=1.0313 \sigma^{2}$, also average $V\left(d_{1}\right)=0.0521 \sigma^{2}<$ average $V\left(d_{2}\right)=0.0543 \sigma^{2}$, using $(7) \operatorname{Cov}\left(d_{1}\right)=0.3750 \sigma^{2}<\operatorname{Cov}\left(d_{2}\right)=0.4375 \sigma^{2}$, average $\operatorname{Cov}\left(d_{1}\right)=0.0208 \sigma^{2}<$ average $\operatorname{Cov}\left(d_{2}\right)=0.0230 \sigma^{2}$ and A-efficiency of $d_{1}=78.79 \%>$ A-efficiency of $d_{2}=74.07 \%$.
Example 3: Consider designs d_{4}^{6} and d_{6}^{6} shown in Table 1. For these designs, $n_{e}^{d_{6}}=21>n_{e}^{d_{4}}=19$, EEC index of $d_{4}=n_{12}^{d_{4}}=7>$ EEC index of $d_{6}=n_{12}^{d_{6}}=6$. This illustrates that, Corollary 3 is not satisfied because $n_{12}^{d_{6}} \ngtr n_{12}^{d_{4}}$ by $4 m_{d}$, however, Corollary 2 is satisfied, and accordingly, average $V\left(d_{4}\right)=0.0567<$ average $V\left(d_{6}\right)=0.0580$ and average $\operatorname{Cov}\left(d_{4}\right)=0.0247<$ average $\operatorname{Cov}\left(d_{6}\right)=0.0268$ and A-efficiency of $d_{4}=71.11 \%>$ A-efficiency of $d_{6}=69.84 \%$.

\begin{tabular}{|c|c|c|c|c|}
\hline Design \& Generator \& n_{e} \& n_{k} \& Estimable factorial effects

\hline d_{1}^{8}

d_{2}^{8} \& $$
\begin{aligned}
& \mathrm{ABCDE}=\mathrm{ABCFG}=\mathrm{CDGH}=\mathrm{BEFH} \\
& \mathrm{I}=\mathrm{ABCDE}=\mathrm{ABFGH}=\mathrm{ACF}=\mathrm{BEF}
\end{aligned}
$$ \& 34

37 \& $$
\begin{gathered}
n_{1}=3 \\
n_{2}=16 \\
n_{3}=15 \\
n_{1}=1 \\
n_{2}=18 \\
n_{3}=18 \\
\hline
\end{gathered}
$$ \& ```

H AH DF
I A B C D E F G AB AC AD AE AF AG BC DE
BD BE BF BG BH CD CE CF CG CH DG DH EH FH GH
I
A B D H AB AE AG BC BF CD CE CF DE DH EG FG FH GH
C E F G AC AD AF AH BD BE BG BH CG CH DF DG EF EH

``` \\
\hline \(d_{1}^{9}\)

\(d_{2}^{9}\) & \[
\begin{aligned}
& \mathrm{I}=\mathrm{ABCDE}=\mathrm{ABFGH}=\mathrm{ACF}=\mathrm{BEGJ} \\
& \mathrm{I}=\mathrm{ABCDE}=\mathrm{DEFGH}=\mathrm{GHJ}=\mathrm{BFGJ}
\end{aligned}
\] & 46
46 & \[
\begin{gathered}
n_{1}=16 \\
n_{2}=24 \\
n_{3}=6 \\
n_{1}=13 \\
n_{2}=24 \\
n_{3}=9 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
I A B E J AE AG AJ BE BG BJ EG GJ \\
C D F H AC AD AF AH BC BD BF BH CE CG CJ DE DG DJ EF EH FG FJ GH HJ \\
G AB CD CF CH DF DH EJ FH \\
I D E AB AD AE AF BC CD CE CF DH \\
A B C F J AG AH AJ BD BE BH BJ CG CH CJ DF DG DJ Ef EG EH EJ FG FH GH \\
G H AC BF BG DE FJ GJ HJ
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.1. Role of EEC index and comparison}

Resolution of a regular fractional factorial serves as an indicator that, all or some of the factorial effects of given order are independently estimable. A resolution V design is required for independent estimation of MEs and TFIs model terms, when three and higher factor interactions are negligible. Only, \(2^{5-1}\) resolution V design is both variance efficient and df-efficient for independent estimation of MEs and TFIs. For more than 5 factor experiments, regular resolution \(V\) designs are not df-efficient and regular resolution III or IV designs are not suitable, for full MEs and TFIs model.
In pursuit of economical designs for MEs and TFIs model, irregular fractions have been tried for maximizing df-efficiency at the expense of orthogonality. Now, almost all the MEs and TFIs are estimable because they are not fully confounded and hence, one look for designs that confound MEs with TFIs only partially, that is, irregular designs of resolution between III and IV. Since there can be more than one such design, criteria for selecting the best suitable design is applied. Generalized resolution criteria selects the one having highest generalized resolution value, however, there can be more than one design of equal generalized resolution value. In this situation, the MMA criterion is useful in selecting the best design, because it attaches unique value to each design. MMA selects design that protects most MEs from aliasing, in hierarchy with I, with MEs and with TFIs. Thus, it assures better estimation of some MEs but does not ensure least confounding (non- orthogonality) among MEs and TFIs. This gets reflected in the A-efficiency values, because it is based on \(\left(X^{\prime} X\right)^{-1}\). Therefore, a criterion that can asses designs in terms of least confounding and higher A efficiency would be useful.
EEC index criterion selects a design of \(3.2^{n-m}\) design which estimates MEs and TFIs with minimum average variance-covariance, that is, the highest A-efficiency. Alike the MMA criterion, it provides ranking for designs with equal generalized resolution, but unlike MMA, it gives ranks in terms of maximum unconfounding of factorial effects simply based on aliased pair counts ( \(n_{12}^{d}\) ). EEC index is most suitable for \(3.2^{n-m}\) irregular designs because, MMA gives best ranking to designs of higher generalized resolution which is ineffective in improving estimability of factorial effects in irregular designs. Logically speaking, EEC index adopts effect hierarchy principle and MMA applies effect heredity principle in selection of \(3.2^{n-m}\) design.

\subsection*{3.2. Selection of the best design for \(3.2^{n-m}\) designs}

There are two advantages of \(3.2^{n-m}\) irregular design as compared to saturated designs for MEs and TFIs model. Firstly, this class of designs embeds within an orthogonal design, a regular \(2^{n-m+1}\) fraction suitable for fitting models in MEs and \(2^{n-m+1}-1-n\) selected TFIs. Thus, a single experiment data can be analyzed for \(3.2^{n-m}\) design data as well as that for the embedded regular design. The estimation index by Chen and Cheng (2004) for the embedded designs can be used to select the best among those and the extra \(2^{n-m}\) degrees of freedom can be used for the analysis of variance (ANOVA) of the embedded design model. Secondly, unlike saturated designs which correlate every factorial effect estimate with all the others in the model, \(3.2^{n-m}\) designs correlate only aliased factorial effects that is, each factorial effect estimates is correlated with only one or two other factorial effects.

In order to select the best design for the model (1) we consider all possible generators including those involving MEs and TFIs. The procedure involves considering alias set of each design and counting the number of aliased pair of MEs and TFIs and aliased triplets of MEs and TFIs.

Table 2 shows values of five different design statistics, namely, EEC index, A-efficiency, df-efficiency, generalized resolution and MMA ranking of irregular fractional factorials shown in Table 1. It is observed that EEC index is proportional to A-efficiency but inversely proportional to df-efficiency because, the total number of estimable factorial effects is lesser in designs with higher number of paired aliases. For example, EEC index is highest for \(d_{1}^{6}\) having lower df-efficiency, while it is lowest for \(d_{6}^{6}\), having highest df-efficiency. This implies that economical designs are generally less variance efficient. Among \(3.2^{6-3}\) design, \(d_{2}^{6}, d_{5}^{6}\) and \(d_{6}^{6}\) have the same generalized resolution of 2.67 with MMA ranks 3,4 and 2 respectively. However, as per variance-covariance based EEC index they receive ranks 2,4 and 5 . The reason for this contradiction is that, half of the MEs and TFIs are least confounded in design \(d_{2}^{6}\) while only one third in \(d_{6}^{6}\) (see Table 1 ). Two designs, \(d_{3}^{5}\) and \(d_{4}^{6}\) are ranked 1 by MMA, respectively for better estimability of \(\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}\) at the cost
of higher confounding of C and TFIs, and better estimability of \(\mathrm{E}, \mathrm{F}\) at the cost of higher confounding of A,B,C,D and TFIs (see Table 1).

Table 3 illustrates existence of orthogonal designs embedded in \(3.2^{n-m}\) designs having estimation index 2 or 3. They can be used as orthogonal main effect design for estimation of MEs and/or design for estimation of TFIs not estimable from \(3.2^{n-m}\), design due to full confounding.

Table 2: EEC index, A-efficiency, EEC and MMA based rank, Average variance covariance, Generalized Resolution of \(3.2^{5-2}, 3.2^{6-3}, 3.2^{7-3}, 3.2^{8-4}\) and \(3.2^{9-4}\) designs
\begin{tabular}{|c|c|l|c|c|c|c|c|c|}
\hline Design & \begin{tabular}{c} 
EEC \\
index
\end{tabular} & \begin{tabular}{c} 
A- \\
efficiency
\end{tabular} & \begin{tabular}{c} 
EEC \\
Rank
\end{tabular} & \begin{tabular}{c} 
Average \\
Variance
\end{tabular} & \begin{tabular}{c} 
Average \\
Covariance
\end{tabular} & \begin{tabular}{c} 
df- \\
Efficiency
\end{tabular} & \begin{tabular}{c} 
Generalized \\
Resolution
\end{tabular} & \begin{tabular}{c} 
MMA \\
Rank
\end{tabular} \\
\hline \hline\(d_{1}^{5}\) & 16 & 88.89 & 1 & 0.0469 & 0.0156 & 66.67 & 2.67 & 3 \\
\(d_{2}^{5}\) & 16 & 88.89 & 1 & 0.0469 & 0.0156 & 66.67 & 1.67 & 5 \\
\(d_{3}^{5}\) & 13 & 81.93 & 2 & 0.0498 & 0.0176 & 66.67 & 3.67 & 1 \\
\(d_{4}^{5}\) & 6 & 72.38 & 3 & 0.0557 & 0.0215 & 66.67 & 2.67 & 2 \\
\(d_{5}^{5}\) & 6 & 72.38 & 3 & 0.0557 & 0.0215 & 66.67 & 2.67 & 4 \\
\hline \hline\(d_{1}^{6}\) & 12 & 78.79 & 1 & 0.0521 & 0.0208 & 75.00 & 1.67 & 6 \\
\(d_{2}^{6}\) & 10 & 74.07 & 2 & 0.0543 & 0.0230 & 79.17 & 2.67 & 3 \\
\(d_{3}^{6}\) & 10 & 74.07 & 2 & 0.0543 & 0.0230 & 79.17 & 1.67 & 5 \\
\(d_{4}^{6}\) & 7 & 71.11 & 3 & 0.0567 & 0.0247 & 79.17 & 3.67 & 1 \\
\(d_{5}^{6}\) & 6 & 70.89 & 4 & 0.0573 & 0.0243 & 75.00 & 2.67 & 4 \\
\(d_{6}^{6}\) & 6 & 69.84 & 5 & 0.0580 & 0.0268 & 87.5 & 2.67 & 2 \\
\hline \hline\(d_{1}^{7}\) & 23 & 81.38 & 1 & 0.0251 & 0.0081 & 60.42 & 3.67 & 1 \\
\(d_{2}^{7}\) & 20 & 78.21 & 2 & 0.0259 & 0.0086 & 60.42 & 2.67 & 2 \\
\hline \hline\(d_{1}^{8}\) & 19 & 75.12 & 1 & 0.0269 & 0.0101 & 70.83 & 2.67 & 2 \\
\(d_{2}^{8}\) & 19 & 74.29 & 2 & 0.0272 & 0.0124 & 77.08 & 3.67 & 1 \\
\hline \hline\(d_{1}^{9}\) & 40 & 84.54 & 1 & 0.0112 & 0.0031 & 47.92 & 3.67 & 1 \\
\(d_{2}^{9}\) & 37 & 81.86 & 2 & 0.0125 & 0.0036 & 47.92 & 3.67 & 2 \\
\hline \hline
\end{tabular}

Here average covariance show absolute covariance values.
Table 3: Embedded \(2^{6-2}\) design in \(3.2^{6-3}\) design with estimation index
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Design & \(d_{1}^{6}\) & \(d_{2}^{6}\) & \(d_{3}^{6}\) & \(d_{4}^{6}\) & \(d_{5}^{6}\) & \(d_{6}^{6}\) \\
\hline Resolution III (Estimation Index 2) & 1 & 1 & 1 & - & - & 1 \\
Resolution IV (Estimation Index 3) & - & - & - & 1 & 1 & - \\
\hline
\end{tabular}

1 indicates existence of design

\section*{4. Characterization of \(3.2^{n-m}\) Designs}

\subsection*{4.1. A variance balance design}

It is known that variance balanced designs are useful for fitting full MEs and TFIs model. The designs \(d_{1}^{5}\) and \(d_{2}^{5}\) are variance-covariance balanced 5 -factor designs alike \(2^{5-1}\) design (see Table 4 in Appendix). All MEs and TFIs are estimated with equal variance and covariance values because they get distributed uniformly in alias set as paired aliases. These designs are listed because unlike variance balanced regular \(2^{5-1}\) fraction, they are suitable when estimation must be complemented with model analysis of variance.

From Theorems 1 and 2, it is easy to see that a necessary and sufficient condition for a \(3.2^{n-m}\) design to be variance and covariance balanced is \(n_{2}^{d}=n_{e}^{d}\).

\subsection*{4.2. Two mixed orthogonal designs}

A design which has few MEs, estimable orthogonally to remaining partially confounded MEs and TFIs is termed as a mixed orthogonal design. Such designs would be useful in experiments, where, few MEs are of special interest and it is desirable to estimate them independently and with higher precision. Among designs listed in Table 1, a 5 -factor design \(d_{4}^{5}\) and 6 -factor design \(d_{5}^{6}\) are such designs. The design \(d_{4}^{5}\) estimates three MEs B, C and D independently of remaining MEs and TFIs, using all 24 runs. Similarly \(d_{5}^{6}\) estimates two MEs C and D independently of other MEs and TFIs using all 24 runs. It is further important because, if desired, all six MEs can be estimated orthogonally to TFIs from the embedded 16 run resolution IV design defined by generator \(\mathrm{I}=\mathrm{ABCD}=\mathrm{CDEF}\).

\subsection*{4.3. A 24 run df-efficient design in six factors}

In literature, 22-run saturated design in 6 -factors by Rechtschaffner (1967) is recommended for MEs and TFIs model (Box and Draper 2007). The design \(d_{6}^{6}\) (see Table 1) is competitive to this design. It estimates all lower order factorial effects except one TFI (AF) with higher, \(70 \%\) A-efficiency, and AF is estimable from an embedded 16 -run design defined by \(d_{e_{1}}^{6}\) (see Appendix).

\section*{5. Conclusion}

The proposed EEC indexing method for selection of the best design does not require any tedious computations, just from alias pattern of \(2^{n-m}\), one can select the most A-efficient \(3.2^{n-m}\) design. EEC index based rank is indicator of maximum unconfounding among MEs and TFIs while MMA rank is indicator of maximum unconfounding among MEs. Thus, highest EEC ranked \(3.2^{n-m}\) design would be suitable for MEs and TFIs model. As a by product of proposed method, one can identify minimum moment aberration \(3.2^{n-m}\) design from study of alias set, as well as, one can identify a \(3.2^{n-m}\) design that can be extended into a response surface design from the study of alias sets of embedded \(2^{n-m}\) designs.

\section*{6. Appendix}

Table 4: Variance and covariance of factorial effects of \(3.2^{5-2}\) and \(3.2^{6-3}\) designs
\begin{tabular}{|l|ll|lll|ll|llll|}
\hline & \multicolumn{3}{|c|}{\(d_{1}^{5}\)} & \multicolumn{3}{c|}{\(d_{2}^{5}\)} & \multicolumn{3}{c|}{\(d_{3}^{5}\)} & \(d_{4}^{5}\) & \(d_{5}^{5}\) \\
\cline { 2 - 11 } & Effects & Var & Cov \\
\hline I & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0 & 0.047 & 0.016 & 0.047 & 0.016 \\
A & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 \\
B & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0 & 0.063 & 0.031 \\
C & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.047 & 0 & 0.047 & 0.000 \\
D & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0 & 0.063 & 0.031 \\
E & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 \\
AB & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.063 & 0.031 & 0.063 & 0.031 \\
AC & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.047 & 0.000 \\
AD & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.063 & 0.031 \\
AE & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 \\
BC & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.047 & 0.016 \\
BD & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.063 & 0.031 \\
BE & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.047 & 0.016 \\
CD & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.047 & 0.000 \\
CE & 0.047 & 0.016 & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.047 & 0.016 \\
DE & 0.047 & 0.016 & 0.047 & 0.016 & 0.063 & 0.031 & 0.063 & 0.031 & 0.063 & 0.031 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\(d_{1}^{6}\)} & \multicolumn{3}{|c|}{\(d_{2}^{6}\)} & \multicolumn{3}{|c|}{\(d_{3}^{6}\)} & \multicolumn{3}{|c|}{\(d_{4}^{6}\)} & \multicolumn{3}{|c|}{\(d_{5}^{6}\)} & \multicolumn{3}{|c|}{\(d_{6}^{6}\)} \\
\hline FE & Var & Cov & FE & Var & Cov \\
\hline I & 0.063 & 0.031 & I & 0.047 & 0.016 & I & 0.047 & 0.016 & I & 0.047 & 0.000 & I & 0.063 & 0.031 & I & 0.047 & 0.016 \\
\hline E & 0.063 & 0.031 & BE & 0.047 & 0.016 & A & 0.047 & 0.016 & A & 0.063 & 0.031 & AE & 0.063 & 0.031 & AE & 0.047 & 0.016 \\
\hline BF & 0.063 & 0.031 & A & 0.063 & 0.031 & B & 0.047 & 0.016 & BE & 0.063 & 0.031 & BF & 0.063 & 0.031 & A & 0.063 & 0.031 \\
\hline A & 0.047 & 0.016 & EF & 0.063 & 0.031 & AB & 0.047 & 0.016 & CF & 0.063 & 0.031 & A & 0.047 & 0.016 & BF & 0.063 & 0.031 \\
\hline AE & 0.047 & 0.016 & BF & 0.063 & 0.031 & C & 0.063 & 0.031 & B & 0.063 & 0.031 & E & 0.047 & 0.016 & E & 0.063 & 0.031 \\
\hline B & 0.063 & 0.031 & B & 0.063 & 0.031 & EF & 0.063 & 0.031 & AE & 0.063 & 0.031 & B & 0.047 & 0.016 & B & 0.063 & 0.031 \\
\hline BE & 0.063 & 0.031 & E & 0.063 & 0.031 & AC & 0.063 & 0.031 & DF & 0.063 & 0.031 & F & 0.047 & 0.016 & AF & 0.063 & 0.031 \\
\hline F & 0.063 & 0.031 & AF & 0.063 & 0.031 & D & 0.047 & 0.016 & C & 0.063 & 0.031 & C & 0.047 & 0 & CD & 0.063 & 0.031 \\
\hline C & 0.047 & 0.016 & C & 0.047 & 0.016 & BC & 0.047 & 0.016 & DE & 0.063 & 0.031 & D & 0.047 & 0 & C & 0.047 & 0.016 \\
\hline CE & 0.047 & 0.016 & DF & 0.047 & 0.016 & E & 0.063 & 0.031 & AF & 0.063 & 0.031 & BE & 0.063 & 0.031 & BD & 0.047 & 0.016 \\
\hline D & 0.047 & 0.016 & D & 0.047 & 0.016 & CF & 0.063 & 0.031 & D & 0.063 & 0.031 & EF & 0.063 & 0.031 & D & 0.047 & 0.016 \\
\hline DE & 0.047 & 0.016 & CF & 0.047 & 0.016 & AE & 0.063 & 0.031 & CE & 0.063 & 0.031 & AF & 0.063 & 0.031 & BC & 0.047 & 0.016 \\
\hline CD & 0.047 & 0.016 & F & 0.063 & 0.031 & F & 0.063 & 0.031 & BF & 0.063 & 0.031 & BD & 0.063 & 0.031 & F & 0.063 & 0.031 \\
\hline AF & 0.047 & 0.016 & AE & 0.063 & 0.031 & CE & 0.063 & 0.031 & E & 0.047 & 0.016 & CE & 0.063 & 0.031 & AB & 0.063 & 0.031 \\
\hline AD & 0.047 & 0.016 & AB & 0.063 & 0.031 & AF & 0.063 & 0.031 & CD & 0.047 & 0.016 & DF & 0.063 & 0.031 & BE & 0.063 & 0.031 \\
\hline CF & 0.047 & 0.016 & AC & 0.047 & 0.016 & BE & 0.047 & 0.016 & F & 0.047 & 0.016 & BC & 0.063 & 0.031 & AC & 0.063 & 0.031 \\
\hline BD & 0.047 & 0.016 & DE & 0.047 & 0.016 & DF & 0.047 & 0.016 & BD & 0.047 & 0.016 & DE & 0.063 & 0.031 & CE & 0.063 & 0.031 \\
\hline DF & 0.047 & 0.016 & BC & 0.047 & 0.016 & BF & 0.047 & 0.016 & BC & 0.047 & 0.016 & CF & 0.063 & 0.031 & DF & 0.063 & 0.031 \\
\hline & & & CE & 0.047 & 0.016 & DE & 0.047 & 0.016 & EF & 0.047 & 0.016 & & & & AD & 0.063 & 0.031 \\
\hline & & & & & & & & & & & & & & & DE & 0.063 & 0.031 \\
\hline & & & & & & & & & & & & & & & CF & 0.063 & 0.031 \\
\hline
\end{tabular}


Alias sets of \(2^{6-3}\) fractional factorial designs
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \(d_{1}^{6}\) & & & \\
\hline I & = ABCD & = ABCDE & = ACDEF & = E & = BEF & = BF & = ACDF \\
\hline A & \(=\mathrm{BCD}\) & \(=\mathrm{BCDE}\) & \(=\mathrm{CDEF}\) & \(=\mathrm{AE}\) & = ABEF & \(=\mathrm{ABF}\) & \(=\mathrm{CDF}\) \\
\hline B & \(=\mathrm{ACD}\) & \(=\mathrm{ACDE}\) & \(=\mathrm{ABCDEF}\) & \(=B E^{1}\) & \(=E F^{1}\) & = F & \(=\mathrm{ABCDF}\) \\
\hline C & \(=\mathrm{ABD}\) & \(=\mathrm{ABDE}\) & = ADEF & \(=\mathrm{CE}\) & = BCEF & \(=\mathrm{BCF}\) & \(=\mathrm{ADF}\) \\
\hline D & \(=\mathrm{ABC}\) & \(=\mathrm{ABCE}\) & = ACEF & \(=\mathrm{DE}\) & = BDEF & \(=\mathrm{BDF}\) & = ABCDF \\
\hline \(A B^{2}\) & \(=C D^{2}\) & \(=\mathrm{CDE}\) & = BCDEF & \(=\mathrm{ABE}\) & \(=\mathrm{AEF}\) & = AF & \(=\mathrm{BCDF}\) \\
\hline \(A D^{3}\) & \(=B C^{3}\) & \(=\mathrm{BCE}\) & = CEF & = ADF & = ABDEF & = ABDF & = CF \\
\hline \(B D^{4}\) & \(=A C^{4}\) & \(=\mathrm{ACE}\) & = ABCEF & \(=\mathrm{BDE}\) & = BEF & \(=\mathrm{DF}\) & \(=\mathrm{ABCF}\) \\
\hline \multicolumn{8}{|l|}{1, 2, 3, 4: Only one of the commonly superscripted alias effects is not estimable.
\[
d_{2}^{6}
\]} \\
\hline I & \(=\mathrm{ABCD}\) & = BCDEF & =ACDE & = AEF & = BE & = ABF & = CDF \\
\hline A & \(=\mathrm{BCD}\) & \(=\mathrm{ABCDEF}\) & \(=\mathrm{CDE}\) & = EF & \(=\mathrm{ABE}\) & \(=\mathrm{BF}\) & \(=\mathrm{ACDF}\) \\
\hline B & \(=\mathrm{ACD}\) & = CDEF & \(=\mathrm{ABCDE}\) & =ABEF & \(=\mathrm{E}\) & \(=\mathrm{AF}\) & \(=\mathrm{BCDF}\) \\
\hline C & = ABD & = BDEF & \(=\mathrm{ADE}\) & \(=\mathrm{ACEF}\) & \(=\mathrm{BCE}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{DF}\) \\
\hline D & = ABC & \(=\mathrm{BCEF}\) & = ACE & \(=\mathrm{ADEF}\) & \(=\mathrm{BDE}\) & \(=\mathrm{ABDE}\) & \(=\mathrm{CF}\) \\
\hline F & \(=\mathrm{ABCDF}\) & \(=\mathrm{BCDE}\) & \(=\mathrm{ACDF}\) & \(=\mathrm{AE}\) & = BEF & \(=A B^{1}\) & \(=C D^{1}\) \\
\hline \(A C^{2}\) & \(=B D^{2}\) & = ABDEF & DE & \(=\mathrm{CEF}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{BCF}\) & ADF \\
\hline \(A D^{3}\) & \(=B C^{3}\) & = ABCEF & \(=\mathrm{CE}\) & \(=\mathrm{DEF}\) & \(=\mathrm{ABDE}\) & \(=\mathrm{BDE}\) & = ACF \\
\hline \multicolumn{8}{|l|}{1,2,3: Only one of the commonly superscripted alias effects is not estimable.
\[
d_{3}^{6}
\]} \\
\hline I & = ABCD & = BDEF & = ABDEF & \(=\) ACEF & = CEF & = A & = BCD \\
\hline B & \(=\mathrm{ACD}\) & \(=\mathrm{DEF}\) & \(=\mathrm{ADEF}\) & \(=\mathrm{ABCEF}\) & \(=\mathrm{BCEF}\) & \(=A B^{1}\) & \(=C D^{1}\) \\
\hline C & \(=\mathrm{ABD}\) & \(=\mathrm{BCDEF}\) & \(=\mathrm{ABCDEF}\) & \(=\mathrm{AEF}\) & \(=\mathrm{EF}\) & \(=A C^{2}\) & \(=B D^{2}\) \\
\hline D & \(=\mathrm{ABC}\) & \(=\mathrm{BEF}\) & \(=\mathrm{ABEF}\) & \(=\mathrm{ACDEF}\) & \(=\mathrm{CDEF}\) & \(=A D^{3}\) & \(=B C^{3}\) \\
\hline E & \(=\mathrm{ABCDE}\) & \(=\mathrm{BDF}\) & \(=\mathrm{ABDF}\) & = ACF & \(=\mathrm{CE}\) & \(=\mathrm{AE}\) & \(=\mathrm{BCDE}\) \\
\hline F & = ABCDF & \(=\mathrm{BCE}\) & \(=\mathrm{ABDE}\) & \(=\mathrm{ACE}\) & \(=\mathrm{CE}\) & = AF & = BCDF \\
\hline BE & = ACDE & \(=\mathrm{DF}\) & = ADF & = ABCF & \(=\mathrm{BCF}\) & = ABF & \(=\mathrm{CDE}\) \\
\hline BF & = ACDF & \(=\mathrm{DE}\) & = ABF & \(=\mathrm{ABCE}\) & \(=\mathrm{BCE}\) & \(=\mathrm{ABF}\) & \(=\mathrm{CDE}\) \\
\hline \multicolumn{8}{|l|}{1, 2, 3: Only one of the commonly superscripted alias effects is not estimable.} \\
\hline I & = ABCD & = BCEF & \(=\mathrm{CDE}\) & =ADEF & = ABE & = BDF & = ACF \\
\hline A & \(=\mathrm{BCD}\) & = ABCEF & \(=\mathrm{ACDE}\) & \(=\mathrm{DEF}\) & \(=\mathrm{BE}\) & \(=\mathrm{ABDF}\) & \(=\mathrm{CF}\) \\
\hline B & \(=\mathrm{ACD}\) & \(=\mathrm{CEF}\) & \(=\mathrm{BCDE}\) & = ABDEF & \(=\mathrm{AE}\) & \(=\mathrm{DF}\) & \(=\mathrm{ABCF}\) \\
\hline C & = ABD & = BEF & \(=\mathrm{DE}\) & =AEF & \(=\mathrm{ACBE}\) & \(=\mathrm{BCDF}\) & = AF \\
\hline D & \(=\mathrm{ABC}\) & = BCDEF & \(=\mathrm{CE}\) & =AEF & = ABDE & = BF & = ACDF \\
\hline E & \(=\mathrm{ABCDE}\) & \(=\mathrm{BCF}\) & \(=C D^{1}\) & \(=\mathrm{ADF}\) & \(=A B^{1}\) & \(=\mathrm{BDEF}\) & = ACEF \\
\hline F & \(=\mathrm{ABCDF}\) & \(=\mathrm{BCE}\) & = CDEF & \(=\mathrm{ADE}\) & \(=\mathrm{ABEF}\) & \(=B D^{2}\) & \(=A C^{2}\) \\
\hline \(A D^{3}\) & \(=B C^{3}\) & = ABCDEF & \(=\mathrm{ACE}\) & = EF & \(=\mathrm{BDE}\) & = ABF & \(=\mathrm{CDF}\) \\
\hline \multicolumn{8}{|l|}{1, 2, 3: Only one of the commonly superscripted alias effects is not estimable.
\[
d_{5}^{6}
\]} \\
\hline I & \(=\mathrm{ABCD}\) & = BCDE & = CDEF & \(=\mathrm{AE}\) & = ABEF & = BF & = ACDF \\
\hline A & \(=\mathrm{BCD}\) & \(=\mathrm{ABCDE}\) & = ACDEF & \(=\mathrm{E}\) & \(=\mathrm{BEF}\) & \(=\mathrm{ABF}\) & \(=\mathrm{CDF}\) \\
\hline B & \(=\mathrm{ACD}\) & \(=\mathrm{CDE}\) & = BCDEF & \(=\mathrm{ABE}\) & = AEF & = F & = ABCDF \\
\hline C & = ABD & \(=\mathrm{BDE}\) & = DEF & \(=\mathrm{ACE}\) & = ABCEF & \(=\mathrm{BCF}\) & = ADE \\
\hline D & \(=\mathrm{ABC}\) & \(=\mathrm{BCE}\) & \(=\mathrm{CEF}\) & \(=\mathrm{ADE}\) & = ABDEF & \(=\mathrm{ADF}\) & = ACF \\
\hline \(A B^{\dagger}\) & \(=C D^{\dagger}\) & \(=\mathrm{ACDE}\) & \(=\mathrm{ABCDEF}\) & \(=\mathrm{BE}\) & = EF & \(=\mathrm{AF}\) & \(=\mathrm{BCDF}\) \\
\hline \(A C^{1}\) & \(=B D^{1}\) & \(=\mathrm{ABDE}\) & = ADEF & \(=\mathrm{CE}\) & \(=\mathrm{BCEF}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{DF}\) \\
\hline \(A D^{2}\) & \(=B C^{2}\) & \(=\mathrm{ABCE}\) & = ACEF & \(=\mathrm{DE}\) & = BDEF & \(=\mathrm{ABDF}\) & \(=\mathrm{CF}\) \\
\hline \multicolumn{8}{|l|}{1, 2: Only one of the commonly superscripted alias effects is not estimable. \(\dagger\) indicates factorial effect is not estimable.} \\
\hline \multicolumn{8}{|c|}{\[
d_{6}^{6}
\]} \\
\hline I & \(=\mathrm{ABCDE}\) & = ABF & \(=\mathrm{AE} \quad=\) & DEF & = BCD & = ACDF & = BEF \\
\hline A & \(=\mathrm{BCDE}\) & \(=\mathrm{BF}\) & \(\mathrm{E} \quad=\) & CDEF & \(=\mathrm{ABCD}\) & \(=\mathrm{CDF}\) & = ABEF \\
\hline B & \(=\mathrm{ACDE}\) & \(=A F^{\dagger}\) & \(=\mathrm{ABE} \quad=\mathrm{B}\) & CDEF & \(=C D\) & \(=\mathrm{ABCDF}\) & \(=E F\) \\
\hline C & \(=\mathrm{ABDE}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{ACE} \quad=\mathrm{D}\) & & = BD & = ADF & = BCEF \\
\hline D & \(=\mathrm{ABCE}\) & \(=\mathrm{ABDF}\) & \(=\mathrm{ADE} \quad=\) & & \(=\mathrm{BC}\) & \(=\mathrm{ACF}\) & \(=\mathrm{BDEF}\) \\
\hline F & =ABCDEF & = AB & \(=\mathrm{AEF}\) = & E & \(=\mathrm{BCDF}\) & = ACD & \(=\mathrm{BE}\) \\
\hline AC & \(=\mathrm{BDE}\) & \(=\mathrm{BCF}\) & \(=\mathrm{CE} \quad=\) & DEF & = ABD & \(=\mathrm{DF}\) & = ABCEF \\
\hline AD & \(=\mathrm{BCE}\) & \(=\mathrm{BDF}\) & \(=\mathrm{DE} \quad=\) & CEF & = ABC & \(=\mathrm{CF}\) & = ABDEF \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) indicates factorial effect is not estimable.
}

Alias set of embedded \(2^{6-2}\) design in \(d_{6}^{6}\)
\begin{tabular}{llll} 
& & \(d_{e_{1}}^{6}\) & \\
& \(=\mathrm{ABCD}\) & \(=\mathrm{ACDEF}\) & \(=\mathrm{BEF}\) \\
I & \(=\mathrm{BCD}\) & \(=\mathrm{CDEF}\) & \(=\mathrm{ABEF}\) \\
A & \(=\mathrm{BCD}\) & \(=\mathrm{ABCDEF}\) & \(=\mathrm{EF}\) \\
B & \(=\mathrm{ACD}\) & \(=\mathrm{ABCDEF}\) \\
C & \(=\mathrm{ABD}\) & \(=\mathrm{ADEF}\) & \(=\mathrm{BCEF}\) \\
D & \(=\mathrm{ABC}\) & \(=\mathrm{ACEF}\) & \(=\mathrm{BDEF}\) \\
E & \(=\mathrm{ABCDE}\) & \(=\mathrm{ACDF}\) & \(=\mathrm{BF}\) \\
F & \(=\mathrm{ABCDF}\) & \(=\mathrm{ACDE}\) & \(=\mathrm{BE}\) \\
AB & \(=\mathrm{CD}\) & \(=\mathrm{BCDEF}\) & \(=\mathrm{AEF}\) \\
AC & \(=\mathrm{BD}\) & \(=\mathrm{DEF}\) & \(=\mathrm{ABCEF}\) \\
AD & \(=\mathrm{BC}\) & \(=\mathrm{CEF}\) & \(=\mathrm{ABDEF}\) \\
AE & \(=\mathrm{BCDE}\) & \(=\mathrm{CDF}\) & \(=\mathrm{ABF}\) \\
AF & \(=\mathrm{BCDF}\) & \(=\mathrm{CDE}\) & \(=\mathrm{ABE}\) \\
CE & \(=\mathrm{ABDE}\) & \(=\mathrm{ADF}\) & \(=\mathrm{BCF}\) \\
CF & \(=\mathrm{ABDF}\) & \(=\mathrm{ADE}\) & \(=\mathrm{BCE}\) \\
DE & \(=\mathrm{ABCE}\) & \(=\mathrm{ACF}\) & \(=\mathrm{BDF}\) \\
DF & \(=\mathrm{ABCF}\) & \(=\mathrm{ACE}\) & \(=\mathrm{BDE}\) \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{Alias sets of \(2^{7-3}\) fractional factorial designs \(d_{1}^{7}\)} \\
\hline I & \(=\mathrm{ABCD}\) & \(=\mathrm{BDFG}\) & = DEG & = ACFG & \(=\mathrm{ABCEG}\) & \(=\mathrm{BEF}\) & \(=\mathrm{ACDEF}\) \\
\hline A & \(=\mathrm{BCD}\) & \(=\mathrm{ABDFG}\) & \(=\mathrm{ADEG}\) & \(=\mathrm{CFG}\) & \(=\mathrm{BCEG}\) & \(=\mathrm{ABEF}\) & \(=\mathrm{CDEF}\) \\
\hline B & \(=\mathrm{ACD}\) & \(=\mathrm{DFG}\) & \(=\mathrm{BDEG}\) & \(=\mathrm{ABCFG}\) & \(=\mathrm{ACEG}\) & \(=\mathrm{EF}\) & \(=\mathrm{ABCDEF}\) \\
\hline C & \(=\mathrm{ABD}\) & \(=\mathrm{BCDFG}\) & \(=\mathrm{CDEG}\) & \(=\mathrm{AFG}\) & \(=\mathrm{ABEG}\) & \(=\mathrm{BCEF}\) & \(=\mathrm{ADEF}\) \\
\hline D & \(=\mathrm{ABC}\) & \(=\mathrm{BFG}\) & \(=\mathrm{EG}\) & \(=\mathrm{ACDFG}\) & \(=\mathrm{ABCDEG}\) & \(=\mathrm{BDEF}\) & \(=\mathrm{ACEF}\) \\
\hline E & \(=\mathrm{ABCDE}\) & \(=\mathrm{BDEFG}\) & \(=\mathrm{DG}\) & \(=\mathrm{ACEFG}\) & \(=\mathrm{ABCG}\) & \(=\mathrm{BF}\) & \(=\mathrm{ACDF}\) \\
\hline F & \(=\mathrm{ABCDF}\) & \(=\mathrm{BDG}\) & \(=\mathrm{DEFG}\) & \(=\mathrm{ACG}\) & \(=\mathrm{ABCEFG}\) & \(=\mathrm{BE}\) & \(=\mathrm{ACDE}\) \\
\hline G & \(=\mathrm{ABCDG}\) & \(=\mathrm{BDF}\) & \(=\mathrm{DE}\) & \(=\mathrm{ACF}\) & \(=\mathrm{ABCE}\) & \(=\mathrm{BEFG}\) & = ACDEFG \\
\hline AB & \(=\mathrm{CD}\) & \(=\mathrm{ADFG}\) & \(=\mathrm{ABDEG}\) & \(=\mathrm{BCFG}\) & \(=\mathrm{CEG}\) & \(=\mathrm{AEF}\) & \(=\mathrm{BCDEF}\) \\
\hline AC & \(=\mathrm{BD}\) & \(=\mathrm{ABCDFG}\) & \(=\mathrm{ACDEG}\) & \(=\mathrm{FG}\) & \(=\mathrm{BEG}\) & \(=\mathrm{ABCEF}\) & \(=\mathrm{DEF}\) \\
\hline AD & \(=\mathrm{BC}\) & \(=\mathrm{ABFG}\) & \(=\mathrm{AEG}\) & \(=\mathrm{CDFG}\) & \(=\mathrm{BCDEG}\) & \(=\mathrm{ABDEF}\) & \(=\mathrm{CEF}\) \\
\hline AE & \(=\mathrm{BCDE}\) & \(=\mathrm{ABDEFG}\) & \(=\mathrm{ADG}\) & \(=\mathrm{CEFG}\) & \(=\mathrm{BCG}\) & \(=\mathrm{ABF}\) & \(=\mathrm{CDF}\) \\
\hline AF & \(=\mathrm{BCDF}\) & \(=\mathrm{ABDG}\) & \(=\mathrm{ADEFG}\) & \(=\mathrm{CG}\) & = BCEFG & \(=\mathrm{ABE}\) & \(=\mathrm{CDE}\) \\
\hline AG & \(=\mathrm{BCDG}\) & \(=\mathrm{ABDF}\) & \(=\mathrm{ADE}\) & \(=\mathrm{CF}\) & \(=\mathrm{BCE}\) & \(=\mathrm{ABEFG}\) & \(=\mathrm{CDEFG}\) \\
\hline BG & \(=\mathrm{ACDG}\) & \(=\mathrm{DF}\) & \(=\mathrm{BDE}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{ACE}\) & \(=\mathrm{EFG}\) & \(=\mathrm{ABCDEFG}\) \\
\hline CE & \(=\mathrm{ABDE}\) & \(=\mathrm{BCDEFG}\) & \(=\mathrm{CDG}\) & \(=\mathrm{AEFG}\) & \(=\mathrm{ABG}\) & \(=\mathrm{BCF}\) & \(=\mathrm{ADF}\) \\
\hline
\end{tabular}
\begin{tabular}{lllllll} 
& & & \\
& \(=\) ABCDE & \\
\hline
\end{tabular}

Alias sets of \(2^{8-4}\) fractional factorial designs
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \(d_{1}^{8}\) & & & \\
\hline I & \(=\mathrm{ABCDE}\) & \(=\mathrm{ABCFG}\) & \(=\mathrm{CDGH}\) & = BEFH & = DEFG & = ABEGH & \(=\mathrm{ACDFH}\) \\
\hline A & \(=\mathrm{BCDE}\) & \(=\mathrm{BCFG}\) & \(=\mathrm{ACDGH}\) & \(=\mathrm{ABEFH}\) & \(=\mathrm{ADEFG}\) & \(=\mathrm{BEGH}\) & \(=\mathrm{CDFH}\) \\
\hline B & \(=\mathrm{ACDE}\) & \(=\mathrm{ACFG}\) & \(=\mathrm{BCDGH}\) & \(=\mathrm{EFH}\) & = BDEFG & \(=\mathrm{AEGH}\) & \(=\mathrm{ABCDFH}\) \\
\hline D & \(=\mathrm{ABCE}\) & \(=\mathrm{ABCDFG}\) & \(=\mathrm{CGH}\) & = BDEFH & \(=\mathrm{EFG}\) & \(=\mathrm{ABDEGH}\) & \(=\mathrm{ACFH}\) \\
\hline E & \(=\mathrm{ABCD}\) & \(=\mathrm{ABCEFG}\) & \(=\mathrm{CDEGH}\) & \(=\mathrm{BFH}\) & \(=\mathrm{DFG}\) & \(=\mathrm{ABGH}\) & = ACDEFH \\
\hline F & \(=\mathrm{ABCDEF}\) & \(=\mathrm{ABCG}\) & \(=\mathrm{CDFGH}\) & \(=\mathrm{BEH}\) & \(=\mathrm{DEG}\) & \(=\mathrm{ABEFGH}\) & \(=\mathrm{ACDH}\) \\
\hline G & \(=\mathrm{ABCDEG}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{CDH}\) & \(=\mathrm{BEFGH}\) & \(=\mathrm{DEF}\) & \(=\mathrm{ABEH}\) & \(=\mathrm{ACDFGH}\) \\
\hline H & \(=\mathrm{ABCDEH}\) & \(=\mathrm{ABCFGH}\) & \(=\mathrm{CDG}\) & \(=\mathrm{BEF}\) & \(=\mathrm{DEFGH}\) & \(=\mathrm{ABEG}\) & \(=\mathrm{ACDF}\) \\
\hline AB & \(=\mathrm{CDE}\) & \(=\mathrm{CFG}\) & \(=\mathrm{ABCDGH}\) & \(=\mathrm{AEFH}\) & \(=\mathrm{ABDEFG}\) & \(=\mathrm{EGH}\) & \(=\mathrm{BCDFH}\) \\
\hline AH & \(=\mathrm{BCDEH}\) & \(=\mathrm{BCFGH}\) & \(=\mathrm{ACDG}\) & \(=\mathrm{ABEF}\) & = ADEFGH & = BEG & \(=\mathrm{CDF}\) \\
\hline BD & \(=\mathrm{ACE}\) & \(=\mathrm{ACDFG}\) & \(=\mathrm{BCGH}\) & \(=\mathrm{DEFH}\) & \(=\mathrm{BEFG}\) & \(=\) ADEGH & \(=\mathrm{ABCFH}\) \\
\hline BE & \(=\mathrm{ACD}\) & \(=\mathrm{ACEFG}\) & = BCDEGH & \(=\mathrm{FH}\) & \(=\mathrm{BDFG}\) & \(=\mathrm{AGH}\) & \(=\mathrm{ABCDEFH}\) \\
\hline BF & \(=\mathrm{ACDEF}\) & \(=\mathrm{ACG}\) & \(=\mathrm{BCDFGH}\) & \(=\mathrm{EH}\) & \(=\mathrm{BDEG}\) & \(=\mathrm{AEFGH}\) & \(=\mathrm{ABCDH}\) \\
\hline BG & \(=\mathrm{ACDEG}\) & \(=\mathrm{ACF}\) & \(=\mathrm{BCDH}\) & \(=\mathrm{EFGH}\) & \(=\mathrm{BDEF}\) & \(=\mathrm{AEH}\) & \(=\mathrm{ABCDFGH}\) \\
\hline CH & \(=\mathrm{ABDEH}\) & \(=\mathrm{ABFGH}\) & \(=D G^{2}\) & \(=\mathrm{BCEF}\) & \(=\mathrm{CDEFGH}\) & \(=\mathrm{ABCEG}\) & \(=\mathrm{ADF}\) \\
\hline \(D F^{3}\) & \(=\mathrm{ABCEF}\) & \(=\mathrm{ABCDG}\) & \(=\mathrm{CFGH}\) & \(=\mathrm{BDEH}\) & \(=E G^{3}\) & = ABDEFGH & \(=\mathrm{ACH}\) \\
\hline ABDFH & = ACEGH & = BCDEFG & \(=\mathrm{CEFH}\) & \(=\mathrm{BDGH}\) & \(=\mathrm{AFG}\) & \(=\mathrm{ADE}\) & \(=\mathrm{BC}\) \\
\hline BDFH & \(=\mathrm{CEGH}\) & \(=\mathrm{ABCDEFG}\) & \(=\mathrm{ACEFH}\) & \(=\mathrm{ABDGH}\) & \(=F G^{1}\) & \(=D E^{1}\) & \(=\mathrm{ABC}\) \\
\hline ADFH & \(=\mathrm{ABCEGH}\) & \(=\mathrm{CDEFG}\) & \(=\mathrm{BCEFH}\) & \(=\mathrm{DGH}\) & \(=\mathrm{ABFG}\) & \(=\mathrm{ABDE}\) & \(=\mathrm{C}\) \\
\hline ABFH & \(=\mathrm{ACDEGH}\) & \(=\mathrm{BCEFG}\) & \(=\mathrm{CDEFH}\) & \(=\mathrm{BGH}\) & \(=\mathrm{ADFG}\) & \(=\mathrm{AE}\) & \(=\mathrm{BCD}\) \\
\hline ABDEFH & \(=\mathrm{ACGH}\) & \(=\mathrm{BCDFG}\) & \(=\mathrm{CFH}\) & \(=\mathrm{BDEGH}\) & \(=\mathrm{AEFG}\) & \(=\mathrm{AD}\) & \(=\mathrm{BCE}\) \\
\hline ABDH & \(=\mathrm{ACEFGH}\) & \(=\mathrm{BCDEG}\) & = CEH & \(=\mathrm{BDFGH}\) & \(=\mathrm{AG}\) & \(=\mathrm{ADEF}\) & \(=\mathrm{BCF}\) \\
\hline ABDFGH & \(=\mathrm{ACEH}\) & \(=\mathrm{BCDEF}\) & \(=\) CEFGH & \(=\mathrm{BDH}\) & \(=\mathrm{AF}\) & \(=\mathrm{ADEG}\) & \(=\mathrm{BCG}\) \\
\hline ABDF & \(=\mathrm{ACEG}\) & = BCDEFGH & \(=\mathrm{CEF}\) & \(=\mathrm{BDG}\) & \(=\mathrm{AFGH}\) & \(=\mathrm{ADEH}\) & \(=\mathrm{BCH}\) \\
\hline DFH & = BCEGH & \(=\mathrm{ACDEFG}\) & = ABCEFH & \(=\mathrm{ADGH}\) & \(=\mathrm{BFG}\) & \(=\mathrm{BDE}\) & \(=\mathrm{AC}\) \\
\hline BDF & \(=\mathrm{CEG}\) & = ABCDEFGH & \(=\mathrm{ACEF}\) & \(=\mathrm{ABDG}\) & \(=\mathrm{FGH}\) & \(=\mathrm{DEH}\) & \(=\mathrm{ABCH}\) \\
\hline AFH & = ABCDEGH & \(=\mathrm{CEFG}\) & = BCDEFH & \(=\mathrm{GH}\) & \(=\mathrm{ABDFG}\) & \(=\mathrm{ABE}\) & \(=\mathrm{CD}\) \\
\hline ADEFH & \(=\mathrm{ABCGH}\) & \(=\mathrm{CDFG}\) & \(=\mathrm{BCFH}\) & \(=\mathrm{DEGH}\) & \(=\mathrm{ABEFG}\) & \(=\mathrm{ABD}\) & \(=\mathrm{CE}\) \\
\hline ADH & \(=\mathrm{ABCEFGH}\) & = CDEG & \(=\mathrm{BCEH}\) & \(=\mathrm{DFGH}\) & \(=\mathrm{ABG}\) & \(=\mathrm{ABDEF}\) & \(=\mathrm{CF}\) \\
\hline ADFGH & \(=\mathrm{ABCEH}\) & \(=\mathrm{CDEF}\) & = BCEFGH & \(=\mathrm{DH}\) & \(=\mathrm{ABF}\) & \(=\mathrm{ABDEG}\) & \(=\mathrm{CG}\) \\
\hline ABCDF & \(=\mathrm{AEG}\) & \(=\mathrm{BDEFGH}\) & \(=E F^{2}\) & \(=\mathrm{BCDG}\) & \(=\mathrm{ACFGH}\) & \(=\mathrm{ACDEH}\) & \(=\mathrm{BH}\) \\
\hline ABH & = ACDEFGH & \(=\mathrm{BCEG}\) & \(=\mathrm{CDEH}\) & \(=\mathrm{BFGH}\) & \(=\mathrm{ADG}\) & = AEF & \(=\mathrm{BCDF}\) \\
\hline
\end{tabular}

1, 2, 3: Only one of the commonly superscripted alias effects is not estimable.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \(d_{2}^{8}\) & & & \\
\hline I & \(=\mathrm{ABCDE}\) & = ABFGH & = ACF & = BEG & = CDEFGH & = BDEF & = ACDG \\
\hline A & \(=\mathrm{BCDE}\) & \(=\mathrm{BFGH}\) & \(=\mathrm{CF}\) & \(=\mathrm{ABEG}\) & = ACDEFGH & \(=\mathrm{ABDEF}\) & \(=\mathrm{CDG}\) \\
\hline B & \(=\mathrm{ACDE}\) & \(=\mathrm{AFGH}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{EG}\) & = BCDEFGH & \(=\mathrm{DEF}\) & \(=\mathrm{ABCDG}\) \\
\hline C & \(=\mathrm{ABDE}\) & \(=\mathrm{ABCFGH}\) & \(=\mathrm{AF}\) & \(=\mathrm{BCEG}\) & \(=\mathrm{DEFGH}\) & \(=\mathrm{BCDEF}\) & \(=\mathrm{ADG}\) \\
\hline D & \(=\mathrm{ABCE}\) & \(=\mathrm{ABDFGH}\) & \(=\mathrm{ACDF}\) & \(=\mathrm{BDEG}\) & \(=\mathrm{CEFGH}\) & \(=\mathrm{BEF}\) & \(=\mathrm{ACG}\) \\
\hline E & \(=\mathrm{ABCD}\) & = ABEFGH & \(=\mathrm{ACEF}\) & \(=\mathrm{BG}\) & \(=\mathrm{CDFGH}\) & \(=\mathrm{BDF}\) & \(=\mathrm{ACDEG}\) \\
\hline F & \(=\mathrm{ABCDEF}\) & \(=\mathrm{ABGH}\) & \(=\mathrm{AC}\) & = BEFG & = CDEGH & \(=\mathrm{BDE}\) & \(=\mathrm{ACDFG}\) \\
\hline G & \(=\mathrm{ABCDEG}\) & \(=\mathrm{ABFH}\) & \(=\mathrm{ACFG}\) & \(=\mathrm{BE}\) & = CDEFH & = BDEFG & \(=\mathrm{ACD}\) \\
\hline H & \(=\mathrm{ABCDEH}\) & \(=\mathrm{ABFG}\) & \(=\mathrm{ACFH}\) & \(=\mathrm{BEGH}\) & = CDEFG & = BDEFH & \(=\mathrm{ACDGH}\) \\
\hline AB & \(=\mathrm{CDE}\) & \(=\mathrm{FGH}\) & \(=\mathrm{BCF}\) & \(=\mathrm{AEG}\) & = ABCDEFGH & \(=\mathrm{ADEF}\) & \(=\mathrm{BCDG}\) \\
\hline AD & \(=\mathrm{BCE}\) & \(=\mathrm{BDFGH}\) & \(=\mathrm{CDF}\) & \(=\mathrm{ABDEG}\) & = ACEFGH & \(=\mathrm{ABEF}\) & \(=\mathrm{CG}\) \\
\hline AE & \(=\mathrm{BCD}\) & \(=\mathrm{BEFGH}\) & \(=\mathrm{CEF}\) & \(=\mathrm{ABG}\) & \(=\mathrm{ACDFGH}\) & \(=\mathrm{ABDF}\) & \(=\mathrm{CDEG}\) \\
\hline AG & \(=\mathrm{BCDEG}\) & \(=\mathrm{BFH}\) & \(=\mathrm{CFG}\) & \(=\mathrm{ABE}\) & \(=\mathrm{ACDEFH}\) & \(=\mathrm{ABDEFG}\) & \(=\mathrm{CD}\) \\
\hline AH & \(=\mathrm{BCDEH}\) & \(=\mathrm{BFG}\) & \(=\mathrm{CFH}\) & = ABEGH & \(=\mathrm{ACDEFG}\) & = ABDEFH & \(=\mathrm{CDGH}\) \\
\hline BC & \(=\mathrm{ADE}\) & \(=\mathrm{ACFGH}\) & \(=\mathrm{ABF}\) & \(=\mathrm{CEG}\) & \(=\mathrm{BDEFGH}\) & \(=\mathrm{CDEF}\) & \(=\mathrm{ABDG}\) \\
\hline BF & \(=\mathrm{ACDEF}\) & \(=\mathrm{AGH}\) & \(=\mathrm{ABC}\) & \(=\mathrm{EFG}\) & \(=\mathrm{BCDEGH}\) & \(=\mathrm{DE}\) & \(=\mathrm{ABCDFG}\) \\
\hline BCGH & \(=\mathrm{AEFH}\) & \(=\mathrm{ABCEFG}\) & = ADEGH & \(=\mathrm{BCDFH}\) & \(=\mathrm{DFG}\) & \(=\mathrm{CEH}\) & \(=\mathrm{ABDH}\) \\
\hline ABCGH & \(=\mathrm{EFH}\) & = BCEFG & \(=\mathrm{DEGH}\) & \(=\mathrm{ABCDFH}\) & \(=\mathrm{ADFG}\) & \(=\mathrm{ACEH}\) & \(=\mathrm{BDH}\) \\
\hline CGH & = ABEFH & = ACEFG & \(=\mathrm{ABDEGH}\) & \(=\mathrm{CDFH}\) & \(=\mathrm{BDFG}\) & \(=\mathrm{BCEH}\) & \(=\mathrm{ADH}\) \\
\hline BGH & = ACEFH & \(=\mathrm{ABEFG}\) & \(=\mathrm{ACDEGH}\) & \(=\mathrm{BDFH}\) & \(=\mathrm{CDFG}\) & \(=\mathrm{EH}\) & \(=\mathrm{ABCDH}\) \\
\hline BCDGH & \(=\mathrm{ADEFH}\) & \(=\mathrm{ABCDEFG}\) & \(=\mathrm{AEGH}\) & \(=\mathrm{BCFH}\) & \(=\mathrm{FG}\) & \(=\mathrm{CDEH}\) & \(=\mathrm{ABH}\) \\
\hline BCEGH & \(=\mathrm{AFH}\) & \(=\mathrm{ABCFG}\) & \(=\mathrm{ADGH}\) & \(=\mathrm{BCDEFH}\) & \(=\mathrm{DEFG}\) & \(=\mathrm{CH}\) & \(=\mathrm{ABDEH}\) \\
\hline BCFGH & = AEH & \(=\mathrm{ABCEG}\) & = ADEFGH & \(=\mathrm{BCDH}\) & \(=\mathrm{DG}\) & \(=\mathrm{CEFH}\) & \(=\mathrm{ABDFH}\) \\
\hline BCH & \(=\mathrm{AEFGH}\) & \(=\mathrm{ABCEF}\) & \(=\mathrm{ADEH}\) & \(=\mathrm{BCDFGH}\) & \(=\mathrm{DF}\) & \(=\mathrm{CEGH}\) & \(=\mathrm{ABDGH}\) \\
\hline BCG & \(=\mathrm{AEF}\) & \(=\mathrm{ABCEFGH}\) & \(=\mathrm{ADEG}\) & \(=\mathrm{BCDF}\) & \(=\mathrm{DFGH}\) & \(=\mathrm{CE}\) & \(=\mathrm{ABD}\) \\
\hline ACGH & = BEFH & \(=\mathrm{CEFG}\) & \(=\) BDEGH & \(=\mathrm{ACDFH}\) & \(=\mathrm{ABDFG}\) & \(=\mathrm{ABCEH}\) & \(=\mathrm{DH}\) \\
\hline ABCDGH & \(=\) DEFH & \(=\mathrm{BCDEFG}\) & \(=\mathrm{EGH}\) & \(=\mathrm{ABCFH}\) & \(=\mathrm{AFG}\) & \(=\mathrm{ACDEH}\) & \(=\mathrm{BH}\) \\
\hline ABCEGH & \(=\mathrm{FH}\) & \(=\mathrm{BCFG}\) & \(=\mathrm{DGH}\) & \(=\mathrm{ABCDEFH}\) & = ADEFG & \(=\mathrm{ACH}\) & \(=\mathrm{BDEH}\) \\
\hline ABCH & \(=\mathrm{EFGH}\) & \(=\mathrm{BCEF}\) & \(=\mathrm{DEH}\) & \(=\mathrm{ABCDFGH}\) & \(=\mathrm{ADF}\) & \(=\mathrm{ACEGH}\) & \(=\mathrm{BDGH}\) \\
\hline ABCG & \(=\mathrm{EF}\) & = BCEFGH & \(=\mathrm{DEG}\) & \(=\mathrm{ABCDF}\) & \(=\mathrm{ADFGH}\) & \(=\mathrm{ACE}\) & \(=\mathrm{BD}\) \\
\hline GH & = ABCEFH & \(=\mathrm{AEFG}\) & \(=\mathrm{ABCDEGH}\) & \(=\mathrm{DFH}\) & \(=\mathrm{BCDFG}\) & \(=\mathrm{BEH}\) & \(=\mathrm{ACDH}\) \\
\hline CFGH & \(=\mathrm{ABEH}\) & \(=\mathrm{ACEG}\) & = ABDEFGH & \(=\mathrm{CDH}\) & \(=\mathrm{BDG}\) & \(=\mathrm{BCEFH}\) & \(=\mathrm{ADFH}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Alias sets of \(2^{9-4}\) fractional factorial designs} \\
\hline I & \(=\mathrm{ABCDE}\) & \(=\mathrm{ABFGH}\) & \(=\mathrm{ACF}\) & = BEGJ & = CDEFGH & = BDEF & \(=\mathrm{ACDGJ}\) \\
\hline A & \(=\mathrm{BCDE}\) & \(=\mathrm{BFGH}\) & \(=\mathrm{CF}\) & \(=\mathrm{ABEGJ}\) & = ACDEFGH & \(=\mathrm{ABDEF}\) & \(=\mathrm{CDGJ}\) \\
\hline B & \(=\mathrm{ACDE}\) & \(=\mathrm{AFGH}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{EGJ}\) & = BCDEFGH & \(=\mathrm{DEF}\) & \(=\mathrm{ABCDGJ}\) \\
\hline C & \(=\mathrm{ABDE}\) & \(=\mathrm{ABCFGH}\) & \(=\mathrm{AF}\) & = BCEGJ & \(=\mathrm{DEFGH}\) & \(=\mathrm{BCDEF}\) & \(=\mathrm{ADGJ}\) \\
\hline D & \(=\mathrm{ABCE}\) & \(=\mathrm{ABDFGH}\) & \(=\mathrm{ACDF}\) & = BDEGJ & \(=\mathrm{CEFGH}\) & \(=\mathrm{BEF}\) & \(=\mathrm{ACGJ}\) \\
\hline E & \(=\mathrm{ABCD}\) & = ABEFGH & \(=\mathrm{ACEF}\) & \(=\mathrm{BGJ}\) & \(=\mathrm{CDFGH}\) & \(=\mathrm{BDF}\) & \(=\mathrm{ACDEGJ}\) \\
\hline F & \(=\mathrm{ABCDEF}\) & \(=\mathrm{ABGH}\) & \(=\mathrm{AC}\) & = BEFGJ & = CDEGH & \(=\mathrm{BDE}\) & = ACDFGJ \\
\hline G & \(=\mathrm{ABCDEG}\) & \(=\mathrm{ABFH}\) & \(=\mathrm{ACFG}\) & \(=\mathrm{BEJ}\) & = CDEFH & = BDEFG & = ACDJ \\
\hline H & \(=\mathrm{ABCDEH}\) & \(=\mathrm{ABFG}\) & \(=\mathrm{ACFH}\) & = BEGHJ & = CDEFG & = BDEFH & \(=\mathrm{ACDGHJ}\) \\
\hline J & \(=\mathrm{ABCDEJ}\) & \(=\mathrm{ABFGHJ}\) & \(=\mathrm{ACFJ}\) & = BEG & \(=\) CDEFGHJ & \(=\mathrm{BDEFJ}\) & \(=\mathrm{ACDG}\) \\
\hline AB & \(=\mathrm{CDE}\) & \(=\mathrm{FGH}\) & \(=\mathrm{BCF}\) & \(=\mathrm{AEGJ}\) & = ABCDEFGH & \(=\mathrm{ADEF}\) & \(=\mathrm{BCDGJ}\) \\
\hline AD & \(=\mathrm{BCE}\) & \(=\mathrm{BDFGH}\) & \(=\mathrm{CDF}\) & \(=\mathrm{ABDEGJ}\) & \(=\mathrm{ACEFGH}\) & \(=\mathrm{ABEF}\) & \(=\mathrm{CGJ}\) \\
\hline AE & \(=\mathrm{BCD}\) & \(=\mathrm{BEFGH}\) & \(=\mathrm{CEF}\) & \(=\mathrm{ABGJ}\) & \(=\mathrm{ACDFGH}\) & \(=\mathrm{ABDF}\) & \(=\mathrm{CDEGJ}\) \\
\hline AG & \(=\mathrm{BCDEG}\) & \(=\mathrm{BFH}\) & \(=\mathrm{CFG}\) & \(=\mathrm{ABEJ}\) & \(=\mathrm{ACDEFH}\) & \(=\mathrm{ABDEFG}\) & \(=\mathrm{CDJ}\) \\
\hline AH & \(=\mathrm{BCDEH}\) & \(=\mathrm{BFG}\) & \(=\mathrm{CFH}\) & \(=\mathrm{ABEGHJ}\) & \(=\mathrm{ACDEFG}\) & \(=\mathrm{ABDEFH}\) & \(=\mathrm{CDGHJ}\) \\
\hline AJ & \(=\mathrm{BCDEJ}\) & \(=\mathrm{BFGHJ}\) & \(=\mathrm{CFJ}\) & \(=\mathrm{ABEG}\) & \(=\mathrm{ACDEFGHJ}\) & \(=\mathrm{ABDEFJ}\) & \(=\mathrm{CDG}\) \\
\hline BC & \(=\mathrm{ADE}\) & = ACFGH & \(=\mathrm{ABF}\) & \(=\mathrm{CEGJ}\) & \(=\mathrm{BDEFGH}\) & = CDEF & \(=\mathrm{ABDGJ}\) \\
\hline BD & \(=\mathrm{ACE}\) & \(=\) ADFGH & \(=\mathrm{ABCDF}\) & \(=\mathrm{DEGJ}\) & = BCEFGH & \(=\mathrm{EF}\) & \(=\mathrm{ABCGJ}\) \\
\hline BE & \(=\mathrm{ACD}\) & \(=\mathrm{AEFGH}\) & \(=\mathrm{ABCEF}\) & \(=\mathrm{GJ}\) & \(=\mathrm{BCDFGH}\) & \(=\mathrm{DF}\) & = ABCDEGJ \\
\hline BF & = ACDEF & \(=\mathrm{AGH}\) & \(=\mathrm{ABC}\) & \(=\mathrm{EFGJ}\) & \(=\mathrm{BCDEGH}\) & \(=\mathrm{DE}\) & = ABCDFGJ \\
\hline BG & = ACDEG & \(=\mathrm{AFH}\) & \(=\mathrm{ABCFG}\) & \(=\mathrm{EJ}\) & \(=\mathrm{BCDEFH}\) & \(=\mathrm{DEFG}\) & \(=\mathrm{ABCDJ}\) \\
\hline BH & \(=\mathrm{ACDEH}\) & = AFG & \(=\mathrm{ABCFH}\) & \(=\mathrm{EGHJ}\) & = BCDEFG & \(=\mathrm{DEFH}\) & \(=\mathrm{ABCDGHJ}\) \\
\hline BJ & \(=\mathrm{ACDEJ}\) & \(=\mathrm{AFGHJ}\) & \(=\mathrm{ABCFJ}\) & \(=\mathrm{EG}\) & = BCDEFGHJ & = DEFJ & \(=\mathrm{ABCDG}\) \\
\hline CD & \(=\mathrm{ABE}\) & \(=\mathrm{ABCDFGH}\) & \(=\mathrm{ADF}\) & = BCDEGJ & \(=\mathrm{EFGH}\) & \(=\mathrm{BCEF}\) & = AGJ \\
\hline CE & \(=\mathrm{ABD}\) & = ABCEFGH & \(=\mathrm{AEF}\) & \(=\mathrm{BCGJ}\) & \(=\mathrm{DFGH}\) & \(=\mathrm{BCDF}\) & = ADEGJ \\
\hline CJ & \(=\mathrm{ABDEJ}\) & \(=\mathrm{ABCFGHJ}\) & \(=\mathrm{AFJ}\) & \(=\mathrm{BCEG}\) & \(=\) DEFGHJ & = BCDEFJ & \(=\mathrm{ADG}\) \\
\hline DG & \(=\mathrm{ABCEG}\) & \(=\mathrm{ABDFH}\) & \(=\mathrm{ACDFG}\) & \(=\mathrm{BDEJ}\) & \(=\mathrm{CEFH}\) & \(=\mathrm{BEFG}\) & \(=\mathrm{ACJ}\) \\
\hline DH & \(=\mathrm{ABCEH}\) & \(=\mathrm{ABDFG}\) & \(=\mathrm{ACDFH}\) & \(=\mathrm{BDEGHJ}\) & \(=\mathrm{CEFG}\) & \(=\mathrm{BEFH}\) & \(=\mathrm{ACGHJ}\) \\
\hline DJ & \(=\mathrm{ABCEJ}\) & \(=\mathrm{ABDFGHJ}\) & \(=\mathrm{ACDFJ}\) & \(=\mathrm{BDEG}\) & = CEFGHJ & = BEFJ & \(=\mathrm{ACG}\) \\
\hline FH & \(=\mathrm{ABCDEFH}\) & \(=\mathrm{ABG}\) & \(=\mathrm{ACH}\) & = BEFGHJ & \(=\mathrm{CDEG}\) & \(=\mathrm{BDEH}\) & \(=\mathrm{ACDFGHJ}\) \\
\hline BCJ & \(=\mathrm{ADEJ}\) & \(=\mathrm{ACFGHJ}\) & \(=\mathrm{ABFJ}\) & = CEG & \(=\mathrm{BDEFGHJ}\) & \(=\mathrm{CDEFJ}\) & \(=\mathrm{ABDG}\) \\
\hline BDG & = ACEG & \(=\mathrm{ADFH}\) & \(=\mathrm{ABCDFG}\) & \(=\mathrm{DEJ}\) & = BCEFH & \(=\mathrm{EFG}\) & \(=\mathrm{ABCJ}\) \\
\hline BCGH & = AEFHJ & = ABCEFGJ & = ADEGH & = BCDFHJ & = DFGJ & = CEHJ & \(=\mathrm{ABDHJ}\) \\
\hline ABCGH & \(=\mathrm{EFHJ}\) & = BCEFGJ & \(=\mathrm{DEGH}\) & \(=\mathrm{ABCDFHJ}\) & \(=\mathrm{ADFGJ}\) & \(=\mathrm{ACEHJ}\) & \(=\mathrm{BDHJ}\) \\
\hline CGH & \(=\mathrm{ABEFHJ}\) & = ACEFGJ & \(=\mathrm{ABDEGH}\) & \(=\mathrm{CDFHJ}\) & \(=\mathrm{BDFGJ}\) & \(=\mathrm{BCEHJ}\) & \(=\mathrm{ADHJ}\) \\
\hline BGH & = ACEFHJ & = ABEFGJ & = ACDEGH & \(=\mathrm{BDFHJ}\) & = CDFGJ & \(=\mathrm{EHJ}\) & \(=\mathrm{ABCDHJ}\) \\
\hline BCDGH & = ADEFHJ & = ABCDEFGJ & = AEGH & = BCFHJ & = FGJ & \(=\mathrm{CDEHJ}\) & \(=\mathrm{ABHJ}\) \\
\hline BCEGH & = AFHJ & \(=\mathrm{ABCFGJ}\) & \(=\mathrm{ADGH}\) & = BCDEFHJ & = DEFGJ & \(=\mathrm{CHJ}\) & = ABDEHJ \\
\hline BCFGH & = AEHJ & \(=\mathrm{ABCEGJ}\) & \(=\) ADEFGH & \(=\mathrm{BCDHJ}\) & \(=\mathrm{DGJ}\) & = CEFHJ & \(=\mathrm{ABDFHJ}\) \\
\hline BCH & = AEFGHJ & = ABCEFJ & \(=\mathrm{ADEH}\) & \(=\mathrm{BCDFGHJ}\) & \(=\mathrm{DFJ}\) & = CEGHJ & \(=\mathrm{ABDGHJ}\) \\
\hline BCG & = AEFJ & \(=\mathrm{ABCEFGHJ}\) & = ADEG & \(=\mathrm{BCDFJ}\) & \(=\mathrm{DFGHJ}\) & = CEJ & \(=\mathrm{ABDJ}\) \\
\hline BCGHJ & \(=\mathrm{AEFH}\) & \(=\mathrm{ABCEFG}\) & \(=\mathrm{ADEGHJ}\) & \(=\mathrm{BCDFH}\) & \(=\mathrm{DFG}\) & \(=\mathrm{CEH}\) & \(=\mathrm{ABDH}\) \\
\hline ACGH & = BEFHJ & \(=\mathrm{CEFGJ}\) & = BDEGH & \(=\mathrm{ACDFHJ}\) & \(=\mathrm{ABDFGJ}\) & \(=\mathrm{ABCEHJ}\) & \(=\mathrm{DHJ}\) \\
\hline ABCDGH & = DEFHJ & = BCDEFGJ & \(=\mathrm{EGH}\) & = ABCFHJ & \(=\mathrm{AFGJ}\) & = ACDEHJ & \(=\mathrm{BHJ}\) \\
\hline ABCEGH & \(=\mathrm{FHJ}\) & = BCFGJ & \(=\mathrm{DGH}\) & = ABCDEFHJ & = ADEFGJ & \(=\mathrm{ACHJ}\) & = BDEHJ \\
\hline ABCH & = EFGHJ & \(=\mathrm{BCEFJ}\) & \(=\mathrm{DEH}\) & \(=\mathrm{ABCDFGHJ}\) & \(=\mathrm{ADFJ}\) & = ACEGHJ & \(=\mathrm{BDGHJ}\) \\
\hline ABCG & = EFJ & = BCEFGHJ & \(=\mathrm{DEG}\) & \(=\mathrm{ABCDFJ}\) & \(=\mathrm{ADFGHJ}\) & \(=\mathrm{ACEJ}\) & \(=\mathrm{BDJ}\) \\
\hline ABCGHJ & \(=\mathrm{EFH}\) & = BCEFG & \(=\mathrm{DEGHJ}\) & \(=\mathrm{ABCDFH}\) & \(=\mathrm{ADFG}\) & \(=\mathrm{ACEH}\) & \(=\mathrm{BDH}\) \\
\hline GH & = ABCEFHJ & \(=\mathrm{AEFGJ}\) & \(=\mathrm{ABCDEGH}\) & \(=\mathrm{DFHJ}\) & \(=\mathrm{BCDFGJ}\) & \(=\mathrm{BEHJ}\) & \(=\mathrm{ACDHJ}\) \\
\hline CDGH & \(=\mathrm{ABDEFHJ}\) & \(=\mathrm{ACDEFGJ}\) & \(=\mathrm{ABEGH}\) & \(=\mathrm{CFHJ}\) & \(=\mathrm{BFGJ}\) & \(=\mathrm{BCDEHJ}\) & \(=\mathrm{AHJ}\) \\
\hline CEGH & \(=\mathrm{ABFHJ}\) & \(=\mathrm{ACFGJ}\) & \(=\mathrm{ABDGH}\) & \(=\) CDEFHJ & \(=\mathrm{BDEFGJ}\) & \(=\mathrm{BCHJ}\) & \(=\mathrm{ADEHJ}\) \\
\hline CFGH & = ABEHJ & = ACEGJ & = ABDEFGH & \(=\mathrm{CDHJ}\) & \(=\mathrm{BDGJ}\) & = BCEFHJ & = ADFHJ \\
\hline CH & = ABEFGHJ & \(=\mathrm{ACEFJ}\) & \(=\mathrm{ABDEH}\) & \(=\mathrm{CDFGHJ}\) & \(=\mathrm{BDFJ}\) & \(=\mathrm{BCEGHJ}\) & \(=\mathrm{ADGHJ}\) \\
\hline CG & = ABEFJ & = ACEFGHJ & \(=\mathrm{ABDEG}\) & \(=\mathrm{CDFJ}\) & \(=\mathrm{BDFGHJ}\) & \(=\mathrm{BCEJ}\) & \(=\mathrm{ADJ}\) \\
\hline CGHJ & = ABEFH & = ACEFG & \(=\mathrm{ABDEGHJ}\) & \(=\mathrm{CDFH}\) & \(=\mathrm{BDFG}\) & \(=\mathrm{BCEH}\) & \(=\mathrm{ADH}\) \\
\hline BDGH & = ACDEFHJ & = ABDEFGJ & \(=\mathrm{ACEGH}\) & \(=\mathrm{BFHJ}\) & = CFGJ & = DEHJ & \(=\mathrm{ABCHJ}\) \\
\hline BEGH & \(=\mathrm{ACFHJ}\) & \(=\mathrm{ABFGJ}\) & \(=\mathrm{ACDGH}\) & = BDEFHJ & \(=\) CDEFGJ & \(=\mathrm{HJ}\) & \(=\mathrm{ABCDEHJ}\) \\
\hline BGHJ & = ACEFH & \(=\mathrm{ABEFG}\) & \(=\mathrm{ACDEGHJ}\) & \(=\mathrm{BDFH}\) & \(=\mathrm{CDFG}\) & \(=\mathrm{EH}\) & \(=\mathrm{ABCDH}\) \\
\hline BCDH & = ADEFGHJ & = ABCDEFJ & \(=\mathrm{AEH}\) & \(=\mathrm{BCFGHJ}\) & \(=\mathrm{FJ}\) & = CDEGHJ & \(=\mathrm{ABGHJ}\) \\
\hline BCDG & = ADEFJ & = ABCDEFGHJ & = AEG & = BCFJ & \(=\mathrm{FGHJ}\) & = CDEJ & \(=\mathrm{ABJ}\) \\
\hline BCDGHJ & = ADEFH & = ABCDEFG & \(=\mathrm{AEGHJ}\) & \(=\mathrm{BCFH}\) & \(=\mathrm{FG}\) & \(=\mathrm{CDEH}\) & \(=\mathrm{ABH}\) \\
\hline BCFG & = AEJ & \(=\mathrm{ABCEGHJ}\) & = ADEFG & \(=\mathrm{BCDJ}\) & \(=\mathrm{DGHJ}\) & = CEFJ & \(=\mathrm{ABDFJ}\) \\
\hline GHJ & \(=\mathrm{ABCEFH}\) & \(=\mathrm{AEFG}\) & \(=\mathrm{ABCDEGHJ}\) & \(=\mathrm{DFH}\) & \(=\mathrm{BCDFG}\) & \(=\mathrm{BEH}\) & \(=\mathrm{ACDH}\) \\
\hline CDH & = ABDEFGHJ & = ACDEFJ & \(=\mathrm{ABEH}\) & \(=\mathrm{CFGHJ}\) & \(=\mathrm{BFJ}\) & = BCDEGHJ & \(=\mathrm{AGHJ}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & \(d_{2}^{9}\) & & & \\
\hline I & \(=\mathrm{ABCDE}\) & = DEFGH & \(=\mathrm{GHJ}\) & = BFGJ & \(=\mathrm{ABCFGH}\) & = ABCDEGHJ & = ACDEFGJ \\
\hline A & \(=\mathrm{BCDE}\) & \(=\mathrm{ADEFGH}\) & \(=\mathrm{AGHJ}\) & \(=\mathrm{ABFGJ}\) & \(=\mathrm{BCFGH}\) & = BCDEGHJ & = CDEFGJ \\
\hline B & \(=\mathrm{ACDE}\) & \(=\mathrm{BDEFGH}\) & \(=\mathrm{BGHJ}\) & \(=\mathrm{FGJ}\) & \(=\mathrm{ACFGH}\) & = ACDEGHJ & = ABCDEFGJ \\
\hline C & \(=\mathrm{ABDE}\) & \(=\) CDEFGH & \(=\mathrm{CGHJ}\) & \(=\mathrm{BCFGJ}\) & \(=\mathrm{ABFGH}\) & \(=\mathrm{ABDEGHJ}\) & = ADEFGJ \\
\hline D & \(=\mathrm{ABCE}\) & \(=\mathrm{EFGH}\) & \(=\mathrm{DGHJ}\) & \(=\mathrm{BDFGJ}\) & \(=\mathrm{ABCDFGH}\) & = ABCEGHJ & = ACEFGJ \\
\hline E & \(=\mathrm{ABCD}\) & \(=\mathrm{DFGH}\) & \(=\mathrm{EGHJ}\) & = BEFGJ & = ABCEFGH & \(=\mathrm{ABCDGHJ}\) & \(=\mathrm{ACDFGJ}\) \\
\hline F & \(=\mathrm{ABCDEF}\) & \(=\mathrm{DEGH}\) & \(=\mathrm{FGHJ}\) & \(=\mathrm{BGJ}\) & \(=\mathrm{ABCGH}\) & \(=\mathrm{ABCDEFGHJ}\) & = ACDEGJ \\
\hline G & \(=\mathrm{ABCDEG}\) & \(=\mathrm{DEFH}\) & \(=\mathrm{HJ}\) & \(=\mathrm{BFJ}\) & \(=\mathrm{ABCFH}\) & \(=\mathrm{ABCDEHJ}\) & \(=\mathrm{ACDEFJ}\) \\
\hline H & \(=\mathrm{ABCDEH}\) & = DEFG & \(=\mathrm{GJ}\) & \(=\mathrm{BFGHJ}\) & \(=\mathrm{ABCFG}\) & = ABCDEGJ & \(=\mathrm{ACDEFGHJ}\) \\
\hline J & \(=\mathrm{ABCDEJ}\) & = DEFGHJ & \(=\mathrm{GH}\) & \(=\mathrm{BFG}\) & \(=\mathrm{ABCFGHJ}\) & \(=\mathrm{ABCDEGH}\) & = ACDEFG \\
\hline AB & \(=\mathrm{CDE}\) & = ABDEFGH & \(=\mathrm{ABGHJ}\) & \(=\mathrm{AFGJ}\) & \(=\mathrm{CFGH}\) & \(=\mathrm{CDEGHJ}\) & \(=\mathrm{BCDEFGJ}\) \\
\hline AD & \(=\mathrm{BCE}\) & \(=\mathrm{AEFGH}\) & \(=\mathrm{ADGHJ}\) & \(=\mathrm{ABDFGJ}\) & \(=\mathrm{BCDFGH}\) & = BCEGHJ & \(=\) CEFGJ \\
\hline AE & \(=\mathrm{BCD}\) & \(=\mathrm{ADFGH}\) & \(=\) AEGHJ & = ABEFGJ & = BCEFGH & \(=\mathrm{BCDGHJ}\) & \(=\mathrm{CDFGJ}\) \\
\hline AF & = BCDEF & = ADEGH & \(=\mathrm{AFGHJ}\) & \(=\mathrm{ABGJ}\) & \(=\mathrm{BCGH}\) & = BCDEFGHJ & = CDEGJ \\
\hline AH & \(=\mathrm{BCDEH}\) & = ADEFG & = AGJ & \(=\mathrm{ABFGHJ}\) & \(=\mathrm{BCFG}\) & = BCDEGJ & = CDEFGHJ \\
\hline AJ & \(=\mathrm{BCDEJ}\) & = ADEFGHJ & \(=\mathrm{AGH}\) & \(=\mathrm{ABFG}\) & \(=\mathrm{BCFGHJ}\) & = BCDEGH & \(=\mathrm{CDEFG}\) \\
\hline BC & \(=\mathrm{ADE}\) & = BCDEFGH & \(=\mathrm{BCGHJ}\) & \(=\mathrm{CFGJ}\) & \(=\mathrm{AFGH}\) & \(=\mathrm{ADEGHJ}\) & \(=\mathrm{ABDEFGJ}\) \\
\hline BD & \(=\mathrm{ACE}\) & \(=\mathrm{BEFGH}\) & \(=\mathrm{BDGHJ}\) & \(=\mathrm{DFGJ}\) & \(=\mathrm{ACDFGH}\) & = ACEGHJ & \(=\mathrm{ABCEFGJ}\) \\
\hline BE & \(=\mathrm{ACD}\) & \(=\mathrm{BDFGH}\) & \(=\mathrm{BEGHJ}\) & \(=\mathrm{EFGJ}\) & = ACEFGH & \(=\mathrm{ACDGHJ}\) & \(=\mathrm{ABCDFGJ}\) \\
\hline BG & = ACDEG & \(=\mathrm{BDEFH}\) & \(=\mathrm{BHJ}\) & \(=\mathrm{FJ}\) & \(=\mathrm{ACFH}\) & = ACDEHJ & \(=\mathrm{ABCDEFJ}\) \\
\hline BJ & \(=\mathrm{ACDEJ}\) & \(=\mathrm{BDEFGHJ}\) & \(=\mathrm{BGH}\) & \(=\mathrm{FG}\) & \(=\mathrm{ACFGHJ}\) & = ACDEGH & \(=\mathrm{ABCDEFG}\) \\
\hline CD & \(=\mathrm{ABE}\) & \(=\mathrm{CEFGH}\) & \(=\mathrm{CDGHJ}\) & \(=\mathrm{BCDFGJ}\) & \(=\mathrm{ABDFGH}\) & \(=\mathrm{ABEGHJ}\) & \(=\mathrm{AEFGJ}\) \\
\hline CE & \(=\mathrm{ABD}\) & \(=\mathrm{CDFGH}\) & \(=\) CEGHJ & = BCEFGJ & \(=\mathrm{ABEFGH}\) & \(=\mathrm{ABDGHJ}\) & \(=\mathrm{ADFGJ}\) \\
\hline CF & \(=\mathrm{ABDEF}\) & \(=\mathrm{CDEGH}\) & \(=\) CFGHJ & \(=\mathrm{BCGJ}\) & \(=\mathrm{ABGH}\) & \(=\mathrm{ABDEFGHJ}\) & = ADEGJ \\
\hline DF & \(=\mathrm{ABCEF}\) & \(=\mathrm{EGH}\) & \(=\) DFGHJ & = BDGJ & \(=\mathrm{ABCDGH}\) & = ABCEFGHJ & = ACEGJ \\
\hline DH & \(=\mathrm{ABCEH}\) & \(=\mathrm{EFG}\) & \(=\mathrm{DGJ}\) & \(=\mathrm{BDFGHJ}\) & \(=\mathrm{ABCDFG}\) & \(=\mathrm{ABCEGJ}\) & = ACEFGHJ \\
\hline DJ & \(=\mathrm{ABCEJ}\) & \(=\mathrm{EFGHJ}\) & \(=\mathrm{DGH}\) & \(=\mathrm{BDFG}\) & \(=\mathrm{ABCDFGHJ}\) & \(=\mathrm{ABCEGH}\) & = ACEFG \\
\hline EH & \(=\mathrm{ABCDH}\) & \(=\mathrm{DFG}\) & \(=\mathrm{EGJ}\) & = BEFGHJ & \(=\mathrm{ABCEFG}\) & \(=\mathrm{ABCDGJ}\) & \(=\mathrm{ACDFGHJ}\) \\
\hline ADF & = BCEF & \(=\mathrm{AEGH}\) & \(=\mathrm{ADFGHJ}\) & = ABDGJ & \(=\mathrm{BCDGH}\) & = BCEFGHJ & = CEGJ \\
\hline ADH & \(=\mathrm{BCEH}\) & \(=\mathrm{AEFG}\) & \(=\mathrm{ADGJ}\) & \(=\mathrm{ABDFGHJ}\) & \(=\mathrm{BCDFG}\) & = BCEGJ & \(=\) CEFGHJ \\
\hline ADJ & \(=\mathrm{BCEJ}\) & \(=\) AEFGHJ & \(=\mathrm{ADGH}\) & \(=\mathrm{ABDFG}\) & \(=\mathrm{BCDFGHJ}\) & \(=\mathrm{BCEGH}\) & = CEFG \\
\hline AEH & \(=\mathrm{BCDH}\) & \(=\mathrm{ADFG}\) & = AEGJ & = ABEFGHJ & = BCEFG & \(=\mathrm{BCDGJ}\) & \(=\) CDFGHJ \\
\hline DEFJ & = BDEHJ & \(=\mathrm{BFH}\) & \(=\mathrm{ABCFJ}\) & \(=\mathrm{ACHJ}\) & = ACDEFH & = BDEG & \(=\mathrm{ACG}\) \\
\hline ADEFJ & \(=\mathrm{ABDEHJ}\) & \(=\mathrm{ABFH}\) & \(=\mathrm{BCFJ}\) & \(=\mathrm{CHJ}\) & = CDEFH & \(=\mathrm{ABDEG}\) & \(=\mathrm{CG}\) \\
\hline BDEFJ & = DEHJ & \(=\mathrm{FH}\) & \(=\mathrm{ACFJ}\) & \(=\mathrm{ABCHJ}\) & = ABCDEFH & \(=\mathrm{DEG}\) & \(=\mathrm{ABCG}\) \\
\hline CDEFJ & = BCDEHJ & \(=\mathrm{BCFH}\) & \(=\mathrm{ABFJ}\) & \(=\mathrm{AHJ}\) & = ADEFH & \(=\mathrm{BCDEG}\) & \(=\mathrm{AG}\) \\
\hline EFJ & = BEHJ & \(=\mathrm{BDFH}\) & \(=\mathrm{ABCDFJ}\) & \(=\mathrm{ACDHJ}\) & = ACEFH & \(=\mathrm{BEG}\) & \(=\mathrm{ACDG}\) \\
\hline DFJ & \(=\mathrm{BDHJ}\) & = BEFH & \(=\mathrm{ABCEFJ}\) & = ACEHJ & \(=\mathrm{ACDFH}\) & \(=\mathrm{BDG}\) & \(=\mathrm{ACEG}\) \\
\hline DEJ & = BDEFHJ & \(=\mathrm{BH}\) & \(=\mathrm{ABCJ}\) & \(=\mathrm{ACFHJ}\) & = ACDEH & = BDEFG & \(=\mathrm{ACFG}\) \\
\hline DEFGJ & \(=\mathrm{BDEGHJ}\) & \(=\mathrm{BFGH}\) & \(=\mathrm{ABCFGJ}\) & \(=\mathrm{ACGHJ}\) & = ACDEFGH & \(=\mathrm{BDE}\) & \(=\mathrm{AC}\) \\
\hline DEFHJ & = BDEJ & \(=\mathrm{BF}\) & \(=\mathrm{ABCFHJ}\) & \(=\mathrm{ACJ}\) & = ACDEF & = BDEGH & \(=\mathrm{ACGH}\) \\
\hline DEF & \(=\mathrm{BDEH}\) & \(=\mathrm{BFHJ}\) & \(=\mathrm{ABCF}\) & \(=\mathrm{ACH}\) & \(=\mathrm{ACDEFHJ}\) & \(=\mathrm{BDEGJ}\) & \(=\mathrm{ACGJ}\) \\
\hline ABDEFJ & = ADEHJ & \(=\mathrm{AFH}\) & \(=\mathrm{CFJ}\) & \(=\mathrm{BCHJ}\) & = BCDEFH & \(=\mathrm{ADEG}\) & \(=\mathrm{BCG}\) \\
\hline AEFJ & \(=\mathrm{ABEHJ}\) & \(=\mathrm{ABDFH}\) & \(=\mathrm{BCDFJ}\) & \(=\mathrm{CDHJ}\) & = CEFH & \(=\mathrm{ABEG}\) & \(=\mathrm{CDG}\) \\
\hline ADFJ & \(=\mathrm{ABDHJ}\) & \(=\mathrm{ABEFH}\) & \(=\mathrm{BCEFJ}\) & = CEHJ & \(=\mathrm{CDFH}\) & \(=\mathrm{ABDG}\) & \(=\mathrm{CEG}\) \\
\hline ADEJ & = ABDEFHJ & \(=\mathrm{ABH}\) & \(=\mathrm{BCJ}\) & \(=\mathrm{CFHJ}\) & \(=\mathrm{CDEH}\) & \(=\mathrm{ABDEFG}\) & \(=\mathrm{CFG}\) \\
\hline ADEFHJ & \(=\mathrm{ABDEJ}\) & \(=\mathrm{ABF}\) & \(=\mathrm{BCFHJ}\) & \(=\mathrm{CJ}\) & \(=\mathrm{CDEF}\) & \(=\mathrm{ABDEGH}\) & \(=\mathrm{CGH}\) \\
\hline ADEF & \(=\mathrm{ABDEH}\) & \(=\mathrm{ABFHJ}\) & \(=\mathrm{BCF}\) & \(=\mathrm{CH}\) & = CDEFHJ & \(=\mathrm{ABDEGJ}\) & \(=\mathrm{CGJ}\) \\
\hline BCDEFJ & \(=\mathrm{CDEHJ}\) & \(=\mathrm{CFH}\) & \(=\mathrm{AFJ}\) & \(=\mathrm{ABHJ}\) & = ABDEFH & = CDEG & \(=\mathrm{ABG}\) \\
\hline BEFJ & \(=\mathrm{EHJ}\) & \(=\mathrm{DFH}\) & \(=\mathrm{ACDFJ}\) & \(=\mathrm{ABCDHJ}\) & \(=\mathrm{ABCEFH}\) & \(=\mathrm{EG}\) & \(=\mathrm{ABCDG}\) \\
\hline BDFJ & \(=\mathrm{DHJ}\) & \(=\mathrm{EFH}\) & = ACEFJ & \(=\mathrm{ABCEHJ}\) & \(=\mathrm{ABCDFH}\) & \(=\mathrm{DG}\) & \(=\mathrm{ABCEG}\) \\
\hline BDEFGJ & = DEGHJ & \(=\mathrm{FGH}\) & \(=\mathrm{ACFGJ}\) & \(=\mathrm{ABCGHJ}\) & = ABCDEFGH & \(=\mathrm{DE}\) & \(=\mathrm{ABC}\) \\
\hline BDEF & \(=\mathrm{DEH}\) & \(=\mathrm{FHJ}\) & \(=\mathrm{ACF}\) & \(=\mathrm{ABCH}\) & \(=\mathrm{ABCDEFHJ}\) & = DEGJ & \(=\mathrm{ABCGJ}\) \\
\hline CEFJ & \(=\mathrm{BCEHJ}\) & \(=\mathrm{BCDFH}\) & \(=\mathrm{ABDFJ}\) & \(=\mathrm{ADHJ}\) & \(=\mathrm{AEFH}\) & \(=\mathrm{BCEG}\) & \(=\mathrm{ADG}\) \\
\hline CDFJ & \(=\mathrm{BCDHJ}\) & \(=\mathrm{BCEFH}\) & = ABEFJ & \(=\mathrm{AEHJ}\) & \(=\mathrm{ADFH}\) & \(=\mathrm{BCDG}\) & \(=\mathrm{AEG}\) \\
\hline CDEJ & = BCDEFHJ & \(=\mathrm{BCH}\) & \(=\mathrm{ABJ}\) & \(=\mathrm{AFHJ}\) & \(=\mathrm{ADEH}\) & \(=\mathrm{BCDEFG}\) & \(=\mathrm{AFG}\) \\
\hline EJ & \(=\mathrm{BEFHJ}\) & \(=\mathrm{BDH}\) & \(=\mathrm{ABCDJ}\) & \(=\mathrm{ACDFHJ}\) & \(=\mathrm{ACEH}\) & = BEFG & \(=\mathrm{ACDFG}\) \\
\hline EFHJ & \(=\mathrm{BEJ}\) & \(=\mathrm{BDF}\) & \(=\mathrm{ABCDFHJ}\) & \(=\mathrm{ACDJ}\) & \(=\mathrm{ACEF}\) & = BEGH & \(=\mathrm{ACDGH}\) \\
\hline EF & \(=\mathrm{BEH}\) & \(=\mathrm{BDFHJ}\) & \(=\mathrm{ABCDF}\) & \(=\mathrm{ACDH}\) & = ACEFHJ & = BEGJ & \(=\mathrm{ACDGJ}\) \\
\hline DFHJ & \(=\mathrm{BDJ}\) & \(=\mathrm{BEF}\) & \(=\mathrm{ABCEFHJ}\) & = ACEJ & \(=\mathrm{ACDF}\) & \(=\mathrm{BDGH}\) & = ACEGH \\
\hline AEJ & = ABEFHJ & \(=\mathrm{ABDH}\) & \(=\mathrm{BCDJ}\) & \(=\mathrm{CDFHJ}\) & \(=\mathrm{CEH}\) & = ABEFG & \(=\mathrm{CDFG}\) \\
\hline AEFHJ & \(=\mathrm{ABEJ}\) & \(=\mathrm{ABDF}\) & \(=\mathrm{BCDFHJ}\) & \(=\mathrm{CDJ}\) & \(=\mathrm{CEF}\) & \(=\mathrm{ABEGH}\) & \(=\mathrm{CDGH}\) \\
\hline AEF & \(=\mathrm{ABEH}\) & \(=\mathrm{ABDFHJ}\) & \(=\mathrm{BCDF}\) & \(=\mathrm{CDH}\) & \(=\mathrm{CEFHJ}\) & \(=\mathrm{ABEGJ}\) & \(=\mathrm{CDGJ}\) \\
\hline ADFHJ & \(=\mathrm{ABDJ}\) & \(=\mathrm{ABEF}\) & \(=\mathrm{BCEFHJ}\) & \(=\mathrm{CEJ}\) & \(=\mathrm{CDF}\) & \(=\mathrm{ABDGH}\) & \(=\mathrm{CEGH}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(d_{1}^{5}\) & \(d_{2}^{5}\) & \(d_{3}^{5}\) & \(d_{4}^{5}\) & \(d_{5}^{5}\) & \(d_{1}^{6}\) & \(d_{2}^{6}\) & \(d_{3}^{6}\) & \(d_{4}^{6}\) & \(d_{5}^{6}\) & \(d_{6}^{6}\) \\
\hline 1 & 1 & 1 & 1 & 1 & b & a & a & a & a & b \\
\hline ab & b & a & a & a & abc & b & c & b & b & c \\
\hline ac & \(a b\) & b & \(a b\) & ab & abd & abc & abc & abc & abc & abc \\
\hline bc & ac & ab & ac & c & bcd & abd & abd & d & abd & d \\
\hline d & bc & ac & bc & ac & ae & acd & acd & acd & acd & abd \\
\hline ad & abc & bc & abc & abc & be & bcd & bcd & bcd & bcd & bcd \\
\hline bd & ad & d & ad & d & ce & ae & ae & be & be & e \\
\hline abd & bd & abd & bd & ad & abce & be & be & ce & ce & abe \\
\hline cd & abd & cd & abd & bd & de & ce & abce & abce & abce & ace \\
\hline acd & cd & acd & cd & cd & abde & de & de & de & de & ade \\
\hline bcd & bcd & bcd & acd & acd & acde & acde & abde & abde & abde & cde \\
\hline abcd & abcd & abcd & abcd & bcd & bcde & bcde & acde & acde & bcde & abcde \\
\hline e & ae & e & e & e & af & bf & af & af & af & af \\
\hline ae & be & abe & be & be & cf & cf & bf & bf & cf & bf \\
\hline be & abe & ce & abe & abe & df & abcf & abcf & cf & abcf & cf \\
\hline abe & ce & ace & ce & ce & acdf & df & df & abdf & df & df \\
\hline ce & bce & bce & ace & bce & aef & abdf & abdf & acdf & abdf & acdf \\
\hline ace & abce & abce & bce & abce & bef & bcdf & acdf & bcdf & acdf & bcdf \\
\hline bce & de & de & de & ade & cef & aef & aef & aef & aef & abef \\
\hline abce & bde & ade & ade & bde & abcef & cef & cef & cef & bef & acef \\
\hline de & abde & bde & bde & abde & def & abcef & abcef & abcef & cef & bcef \\
\hline abde & acde & abde & cde & acde & abdef & def & abdef & def & def & adef \\
\hline acde & bcde & acde & bcde & bcde & acdef & abdef & acdef & abdef & acdef & bdef \\
\hline bcde & abcde & bcde & abcde & abcde & bcdef & acdef & bcdef & bcdef & bcdef & abcdef \\
\hline
\end{tabular}

Treatment combinations in bold represent embedded designs, \(2^{6-2}\) in \(d_{6}^{6}\)

\section*{References}
[1] Addelman, S. (1961). Irregular fractions of the \(2^{n}\) Factorial Experiments. Technometrics, 3, \(479-496\).
[2] Box, G.E.P. and Draper, N.R. (2007). Response surfaces, mixtures, and ridge analyses. Wiley series in probability and statistics, Second edition.
[3] Chen Hegang H. and Cheng Ching Shui (2004). Aberration, estimation capacity and estimation index. Statistica Sinica, 14, 203 - 215.
[4] Daniel, C. (1956). Fractional replication in industrial research. Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, 8, 87-98.
[5] Deng Lih-Yuan and Tang Boxin (1999). Generalized resolution and minimum aberration criteria for plackett-burman and other nonregular factorial designs. Statistica Sinica, 9, 1071-1082.
[6] John, P. W. M. (1961). Three-quarter replicates of \(2^{5}\) and \(2^{6}\) designs. Biometric, \(319-321\).
[7] John, P. W. M. (1962). Three quarter replicates of \(2^{n}\) designs. Biometrics, \(319-321\).
[8] Kuhfeld, W. F. (1997). Efficient Experimental Designs Using Computerized Searches. Sawtooth Software Research paper series, SAS Institute, Inc.
[9] Patel M. S. (1963). Partially Duplicated Fractional Factorial Designs. Technometrics, 5, 71-83.
[10] Rechtschaffner, R. L. (1967). Saturated fractions of \(2^{n}\) and \(3^{n}\) factorial design. Technometrics, 9, \(569-575\).
[11] Robert W. Mee (2004). Efficient two level designs for estimating all main effects and two factor interactions.Journal of Quality Technology, 36, 400-412.
[12] Tang B. and Zhou J. (2009). Existence and construction of two-level orthogonal arrays for estimating main effects and some specified two-factor interactions. Statistica Sinica, 9, 1193-1201.
[13] Tang B. and Zhou J. (2013). D-optimal two-level orthogonal arrays for estimating main effects and some specified twofactor interactions. Metrika, 76, 325-337.
[14] Tobias, R. (1996). Saturated second-order two-level designs: An empirical approach. SAS Institute Technical Report. [http://support.sas.com/rnd/app/papers/minres5.pdf]
[15] Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica, 13, 691 -708 .```


[^0]:    2010 Mathematics Subject Classification.
    Keywords. A-efficient, irregular fractional factorial, estimation index, minimum moment aberration, generalized resolution. Received: 03 May 2015; Accepted: 07 January 2016

    Email addresses: btarapara@gmail.com (B Tarapara), j.divecha@yahoo.com (J Divecha)

