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Abstract. The high risk of the conditional hazard function is a parameter of great importance in
seismicity studies, because it constitutes the maximum risk of occurrence of an earthquake in a given
interval of time. It is shown that the (empirically determined) the high risk of the kernel estimate we
establish the asymptotic behavior of a hazard rate in the presence of a random explanatory variable and
asymptotic normality of independence data.

1. Introduction

The statistical analysis of functional data studies the experiments whose results are generally the curves.
Under this supposition, the statistical analysis focuses on a framework of infinite dimension for the data
under study. This field of modern statistics has received much attention in the last 20 years, and it has
been popularized in the book of Ramsay and Silverman (2005). This type of data appears in many fields
of applied statistics: environmetrics (Damon and Guillas, (2002)), chemometrics (Benhenni et al., (2007)),
meteorological sciences (Besse et al., (2000)), etc.

The study of the hazard function has been subject to several investigations and many authors considered
this function in their investigations. Among others, we refer to Watson and Leadbetter (1964) who were
the first to study the nonparametric estimation of the hazard function and proposed a kernel estimate; in
the sequel, many authors have been interested in the study of such a function. For instance, Collomb et al.
(1987) studied the dependent case, Liu and Van Ryzin (1985) were interested in the histogram estimator
of the hazard function for censored data, and Youndje et al. (1996) proposed a solution to the bandwith
selection problem for the kernel hazard estimate and gave properties of the selected bandwith. In the sequel,
Quintela (2007) used the plug-in bandwith selection method in the case of a weak dependence on the sample
data and a result of asymptotic optimality for the plug-in bandwith is presented. Simulations are done
as well to compare this method to the ”leave more than one out” cross-validation criterion and either to
show that smaller errors and much less sample variability can be reached. Besides, we notice that most
of the precursor literature on nonparametric smoothing of hazard function was based on the assumption
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of independence on the sample variables, which is far from being realistic. This is for instance the case of
micro earthquake studies (Rice and Rosenblatt (1976); Estévez et al., 2002). Alternatively, many authors
investigated the case of dependent hazard estimation, for instance Sarda and Vieu (1989), Vieu (1991), and
Estvez and Quintela (1999), to name a few.

Recently, Quintela (2010) studied the recursive kernel hazard estimation of strong mixing data, by use
of the density and the distribution, and established the strong consistency of the proposed estimator and a
rate of convergence identical to the one obtained in the independence case.

1.1. Hazard and conditional hazard

The estimation of the hazard function is a problem of considerable interest, especially to inventory
theorists, medical researchers, logistics planners, reliability engineers and seismologists. The non-parametric
estimation of the hazard function has been extensively discussed in the literature. Beginning with Watson
and Leadbetter (1964), there are many papers on these topics: Ahmad (1976), Singpurwalla and Wong
(1983), etc. We can cite Quintela (2007) for a survey.

The literature on the estimation of the hazard function is very abundant, when observations are vectorial.
Cite, for instance, Watson and Leadbetter (1964), Roussas (1989), Lecoutre and Ould-Säıd (1993), Estèvez
et al. (2002) and Quintela-del-Rio (2006) for recent references. In all these works the authors consider inde-
pendent observations or dependent data from time series. The first results on the nonparametric estimation
of this model, in functional statistics were obtained by Ferraty et al. (2008). They studied the almost
complete convergence of a kernel estimator for hazard function of a real random variable dependent on a
functional predictor and Laksaci and Mechab (2010) in the case of spatial variables. Asymptotic normality
of the latter estimator was obtained, in the case of α- mixing, by Quintela-del-Rio (2008). We refer to Fer-
raty et al. (2010) and Bouchentouf et al. (2014) for uniform almost complete convergence of the functional
component of this nonparametric model. When hazard rate estimation is performed with multiple variables,
the result is an estimate of the conditional hazard rate for the first variable, given the levels of the remaining
variables. Many references, practical examples and simulations in the case of non-parametric estimation
using local linear approximations can be found in Spierdijk (2008).

Our paper presents some asymptotic properties related with the nonparametric estimation of the maxi-
mum of the conditional hazard function. In a functional data setting, the conditioning variable is allowed to
take its values in some abstract semi-metric space. In this case, Ferraty et al. (2008) define non-parametric
estimators of the conditional hazard function. They give the rates of convergence (in an almost complete
sense) to the corresponding functions, in a dependence (α-mixing) context. We extend their results by calcu-
lating the maximum of the conditional hazard function of these estimates, and establishing their asymptotic
normality, considering a particular type of kernel for the functional part of the estimates. Because the hazard
function estimator is naturally constructed using these two last estimators, the same type of properties is
easily derived for it. Our results are valid in a real (one- and multi-dimensional) context.

If X is a random variable associated to a lifetime (ie, a random variable with values in R+, the hazard rate
of X (sometimes called hazard function, failure or survival rate ) is defined at point x as the instantaneous
probability that life ends at time x. Specifically, we have:

h(x) = lim
dx→0

P (X ≤ x+ dx|X ≥ x)

dx
, (x > 0).

When X has a density f with respect to the measure of Lebesgue, it is easy to see that the hazard rate
can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F (x)
, for all x such that F (x) < 1,

where F denotes the distribution function of X and S = 1− F the survival function of X.
In many practical situations, we may have an explanatory variable X = x and the main issue is to

estimate the conditional random rate defined as
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hx(y) = lim
dy→0

P (X ≤ y + dy|Y > y, X = x)

dy
, for y > 0,

which can be written naturally as follows:

hzx(y) =
fx(y)

Sx(y)
=

fx(y)

1− F x(y)
, once F x(y) < 1. (1)

Study of functions h(·) and hz(·) is of obvious interest in many fields of science ( biology, medicine,
reliability , seismology, econometrics, ... ) and many authors are interested in construction of nonparametric
estimators of h.

In this paper we propose an estimate of the maximum risk, through the nonparametric estimation of the
conditional hazard function.

The layout of the paper is as follows. Section 2 describes the non-parametric functional setting: the
structure of the functional data and the mixing conditions, the conditional density, distribution and hazard
operators, and the corresponding non-parametric kernel estimators. Section 3 states the almost complete
convergence1) (with rates of convergence2)) for nonparametric estimates of the derivative of the conditional
hazard and the maximum risk. In Section 4, we calculate the variance of the conditional density, distribution
and hazard estimates, the asymptotic normality of the three estimators considered is developed in this
Section. Finally, Section 5 includes some proofs of technical Lemmas.

2. Nonparametric estimation with functional data

Let {(Xi, Yi), i = 1, . . . , n} be a sample of n random pairs, each one distributed as (X,Y ), where the
variable X is of functional nature and X is scalar. Formally, we will consider that X is a random variable
valued in some semi-metric functional space F , and we will denote by d(·, ·) the associated semi-metric. The
conditional cumulative distribution of X given X = x is defined for any y ∈ R and any x ∈ F by

F x(y) = P(Y ≤ y|X = x),

while the conditional density, denoted by fx(y) is defined as the density of this distribution with respect to
the Lebesgue measure on R. The conditional hazard is defined as in the non-infinite case (1).

In a general functional setting, f , F and h are not standard mathematical objects. Because they are
defined on infinite dimensional spaces, the term operators may be a more adjusted in terminology.

2.1. The functional kernel estimates

Following in Ferraty et al. (2008), the conditional density operator fx(·) is defined by using kernel
smoothing methods

f̂x(y) =

n∑
i=1

h−1n K
(
h−1n d(x,Xi)

)
H
(
h−1n (y − Yi)

)
n∑
i=1

K
(
h−1n d(x,Xi)

) ,

where K and H are kernel functions and hn is sequence of smoothing parameter. The conditional distribution
operator F x(·) can be estimated by

F̂ x(y) =

n∑
i=1

Wni(x)1{Yi≤y}, ∀y ∈ R

1)Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely to some variable T , if for any
ε > 0, we have

∑
n P(|Tn − T | > ε) < ∞. This mode of convergence implies both almost sure and in probability convergence

(see for instance Bosq and Lecoutre, (1987)).
2)Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete convergence un, if there exists some

ε > 0 for which
∑

n P(|Tn| > εun) <∞. This is denoted by Tn = O(un), a.co. (or equivalently by Tn = Oa.co.(un)).
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with 1{·} being the indicator function and where Wni(x) =
h−1
n K(h−1

n d(x,Xi))∑n
j=1K(h−1

n d(x,Xj))
, K is a kernel function and

hn is a sequence of positive real numbers which goes to zero as n goes to infinity.
Consequently, the conditional hazard operator is defined in a natural way by

ĥx(y) =
f̂x(y)

1− F̂ x(y)
.

For z ∈ F , we denote by hx(·) the conditional hazard function of Y1 given X1 = x. We assume that
hx(·) is unique maximum and its high risk point is denoted by θ(x) := θ, which is defined by

hx(θ(x)) := hx(θ) = max
y∈S

hx(y). (2)

A kernel estimator of θ is defined as the random variable θ̂(x) := θ̂ which maximizes a kernel estimator

ĥx(·), that is,

ĥx(θ̂(x)) := ĥx(θ̂) = max
y∈S

ĥx(y) (3)

where hz and ĥz are defined above.
Note that the estimate θ̂ is note necessarily unique and our results are valid for any choice satisfying (3).

We point out that we can specify our choice by taking

θ̂(x) = inf

{
t ∈ S such that ĥx(t) = max

y∈S
ĥx(y)

}
.

As in any non-parametric functional data problem, the behavior of the estimates is controlled by the
concentration properties of the functional variable X = x.

φx(hn) = P(X ∈ B(x, hn)),

where B(x, hn) being the ball of center x and radius hn, namely B(x, hn) = P (f ∈ F , d(x, f) < hn) (for
more details, see Ferraty and Vieu (2006), Chapter 6 ).

In the following, z will be a fixed point in F , Nx will denote a fixed neighborhood of x, S will be a fixed
compact subset of R+. We will led to the hypothesis below concerning the function of concentration φx

(H1) ∀hn > 0, 0 < P (X ∈ B(x, hn)) = φx(hn) and lim
hn→0

φx(hn) = 0

Note that (H1) can be interpreted as a concentration hypothesis acting on the distribution of the f.r.v.
of X = x.

Our nonparametric models will be quite general in the sense that we will just need the following simple
assumption for the marginal distribution of X, and let us introduce the technical hypothesis necessary for
the results to be presented. The non-parametric model is defined by assuming that

(H2)

{
∀(y1, y2) ∈ S2,∀(x1, x2) ∈ N 2

x , for some b1 > 0, b2 > 0
|F x1(y1)− F x2(y2)| ≤ Cx(d(x1, x2)b1 + |y1 − y2|b2),

(H3)

{
∀(y1, y2) ∈ S2,∀(x1, x2) ∈ N 2

x , for some j = 0, 1, ν > 0, β > 0
|fx1 (j)(y1)− fx2 (j)(y2)| ≤ Cx(d(x1, x2)ν + |y1 − y2|β),

(H4) ∃γ <∞, f ′z(x) ≤ γ, ∀(x, y) ∈ F × S,

(H5) ∃τ > 0, F x(y) ≤ 1− τ, ∀(x, y) ∈ F × S.
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(H6) H is differentiable such that

(H6a) ∀(t1, t2) ∈ R2; |H(j)(t1)−H(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1
and H(j)are bounded for j = 0, 1

(H6b)

∫
R
t2H2(t)dt <∞,

(H6c)

∫
R
|t|β(H ′(t))2dt <∞

(H7) The kernel K is positive bounded function supported on [0, 1] and it is of class C1 on (0, 1) such that
∃C1, C2, −∞ < C1 < K ′(t) < C2 < +∞ for 0 < t < 1

(H8) There exists a function ζx0 (·) such that for all t ∈ [0, 1] lim
hn→0

φx(thn)

φx(hn)
= ζx0 (t).

(H9) The bandwidth hn, small ball probability φx(hn) satisfying
(H9a) lim

n→∞
hn = 0

(H9b) lim
n→∞

log n

nhnφx(hn)
= 0

(H9c) lim
n→∞

log n

nh2j+1
n φx(hn)

= 0, j = 0, 1;

Remark 2.1. Assumption (H1) plays an important role in our methodology. It is known as (for small
hn) the ”concentration hypothesis acting on the distribution of X” in infinite-dimensional spaces. This
assumption is not at all restrictive and overcomes the problem of the non-existence of the probability density
function. In many examples, around zero the small ball probabilityφx(hn) can be written approximately as
the product of two independent functions ψ(z) and ϕ(hn) as φx(hn) = ψ(x)ϕ(hn) + o(ϕ(hn)). This idea was
adopted by Masry (2005) who reformulated the Gasser et al. (1998) one. The increasing propriety of φx(·)
implies that ζxhn

(·) is bounded and then integrable (all the more so ζx0 (·) is integrable).
Without the differentiability of φx(·), this assumption has been used by many authors where ψ(·) is

interpreted as a probability density, while ϕ(·) may be interpreted as a volume parameter. In the case of
finite-dimensional spaces, that is S = Rd, it can be seen that φx(hn) = C(d)hdnψ(x) + o(hdn), where C(d) is
the volume of the unit ball in Rd. Furthermore, in infinite dimensions, there exist many examples fulfilling
the decomposition mentioned above. We quote the following (which can be found in Ferraty et al. (2007)):

1. φx(hn) ≈ ψ(hn)hγn for some γ > 0.
2. φx(hn) ≈ ψ(hn)hγn exp {C/hpn} for some γ > 0 and p > 0.
3. φx(hn) ≈ ψ(hn)/| lnhn|.
The function ζxhn

(·) which intervenes in Assumption (H9) is increasing for all fixed hn. Its pointwise
limit ζx0 (·) also plays a determinant role. It intervenes in all asymptotic properties, in particular in the
asymptotic variance term. With simple algebra, it is possible to specify this function (with ζ0(u) := ζx0 (u) in
the above examples by:

1. ζ0(u) = uγ ,
2. ζ0(u) = δ1(u) where δ1(·) is Dirac function,
3. ζ0(u) = 1]0,1](u).

Remark 2.2. Assumptions (H2) and (H3) are the only conditions involving the conditional probability and
the conditional probability density of Y given X = x. It means that F (·|·) and f(·|·) and its derivatives
satisfy the Hölder condition with respect to each variable. Therefore, the concentration condition (H1) plays
an important role. Here we point out that our assumptions are very usual in the estimation problem for
functional regressors (see, e.g., Ferraty et al. (2008)).

Remark 2.3. Assumptions (H6), (H7) and (H9) are classical in functional estimation for finite or infinite
dimension spaces.
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3. Nonparametric estimate of the maximum of the conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of hx on S. We will suppose
that hx is sufficiently smooth ( at least of class C2) and verifies that h′x(θ) = 0 and h

′′ z(θ) < 0.
We can write an estimator of the first derivative of the conditional hazard function through the first

derivative of the estimator (1). Our maximum estimate is defined by assuming that there is some unique θ̂

on S such that 0 = ĥ′(θ̂) < |ĥ′
x
(y)| for all x ∈ S and x 6= θ̂

Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of S, and that θ satisfies the
uniqueness condition, that is; for any ε > 0 and µ(z), there exists ξ > 0 such that |θ(x)− µ(x)| ≥ ε implies
that |hx(θ(x))− hx(µ(x))| ≥ ξ.

We can write an estimator of the first derivative of the hazard function through the first derivative of
the estimator. Our maximum estimate is defined by assuming that there is some unique θ̂ on S◦.

It is therefore natural to try to construct an estimator of the derivative of the function hx on the basis
of these ideas. To estimate the conditional distribution function and the conditional density function in the
presence of functional conditional random variable X = x.

The kernel estimator of the derivative of the function conditional random functional hz can therefore be
constructed as follows:

ĥ′
x
(y) =

f̂ ′
x
(y)

1− F̂ x(y)
+ (ĥx(y))2, (4)

the estimator of the derivative of the conditional density is given in the following formula:

f̂ ′
x
(y) =

n∑
i=1

K(h−1n d(x,Xi))H
′(h−1n (y − Yi))

h2n

n∑
i=1

K(h−1n d(x,Xi))

. (5)

Later, we need assumptions on the parameters of the estimator, ie onK,H,H ′ and hn are little restrictive.
Indeed, on one hand, they are not specific to the problem estimate of hx (but inherent problems of F x, fx and
f ′x estimation), and secondly they consist with the assumptions usually made under functional variables.

Remark 3.1. Generally, the hazard function has a global maximum in the time intervals with values closest
to zero, corresponding to the earthquakes with bigger intensity (Vere-Jones, 1970).

Also, the hazard function can have several local maxima, indicating the times with the highest risk in a
certain period (see the examples in Estévez et al., (2002)).

The hypothesis of uniqueness is only established for the sake of clarity. Following our proofs, if several
local estimated maxima exist, the asymptotic results remain valid for each of them.

We state the almost complete convergence (withe rates of convergence) of the maximum estimate by the
following results:

Theorem 3.2. Under assumption (H1)-(H7) we have

θ̂ − θ → 0 a.co. (6)

Remark 3.3. The hypothesis of uniqueness is only established for the sake of clarity. Following our proofs,
if several local estimated maxima exist, the asymptotic results remain valid for each of them.

Proof. Because h′x(·) is continuous, we have, for all ε > 0. ∃ η(ε) > 0 such that

|t− θ| > ε⇒ |h′x(t)− h′x(θ)| > η(ε).

Therefore,
P{|θ̂ − θ| ≥ ε} ≤ P{|h′x(θ̂)− h′x(θ)| ≥ η(ε)}.
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We also have

|h′x(θ̂)− h′x(θ)| ≤ |h′x(θ̂)− ĥ′x(θ̂)|+ |ĥ′x(θ̂)− h′x(θ)| ≤ sup
y∈S
|ĥ′x(y)− h′x(y)|, (7)

because ĥ′x(θ̂) = h′x(θ) = 0.

Then, uniform convergence of h′x will imply the uniform convergence of θ̂. That is why, we have the
following lemma.

Lemma 3.4. Under assumptions of Theorem 3.2, we have

sup
y∈S
|ĥ′x(y)− h′x(y)| → 0 a.co. (8)

The proof of this lemma will be given in Appendix.

Theorem 3.5. Under assumption (H1)-(H7), (H9a) and (H9c) we have

sup
y∈S
|θ̂ − θ| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3nφx(hn)

)
(9)

Proof. By using Taylor expansion of the function h′x at the point θ̂, we obtain

h′x(θ̂) = h′x(θ) + (θ̂ − θ)h′′x(θ∗n), (10)

with θ∗ a point between θ and θ̂.
Now, because h′x(θ) = ĥ′x(θ̂)

|θ̂ − θ| ≤ 1

h′′x(θ∗n)
sup
y∈S
|ĥ′x(y)− h′x(y)| (11)

The proof of Theorem will be completed showing the following lemma.

Lemma 3.6. Under the assumptions of Theorem 3.5, we have

sup
y∈S
|ĥ′x(y)− h′x(y)| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3nφx(hn)

)
(12)

The proof of lemma will be given in the Appendix.

4. Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to add the following assump-
tions:

(H6d)

∫
R
(H ′(t))2dt <∞,

(H10) 0 = ĥ′
x
(θ̂) < |ĥ′

x
(y)|),∀y ∈ S, y 6= θ̂

The following result gives the asymptotic normality of the maximum of the conditional hazard function.
Let

A = {(x, y) : (x, y) ∈ F × R, ay2F
x(y) (1− F x(y)) 6= 0}
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Theorem 4.1. Under conditions (H1)-(H10) we have (θ ∈ S/fx(θ), 1− F x(θ) > 0)(
nh3nφx(hn)

)1/2 (
ĥ
′x(θ)− h

′x(θ)
)
D→N

(
0, σ2

h′(θ)
)

where →D denotes the convergence in distribution,

ayl = Kl(1)−
∫ 1

0

(
Kl(u)

)′
ζy0 (u)du for l = 1, 2

and

σ2
h′(θ) =

ay2h
x(θ)

(ay1)
2

(1− F x(θ))

∫
(H ′(t))2dt.

Proof. Using again (17), and the fact that

(1− F x(y))

(1− F̂ x(y)) (1− F x(y))
−→ 1

1− F x(y)

and

f̂ ′x(y)(
1− F̂ x(y)

)
(1− F x(y))

−→ f ′x(y)

(1− F x(y))
2 .

The asymptotic normality of
(
nh3nφz(hn)

)1/2 (
ĥ′
x
(θ)− h′x(θ)

)
can be deduced from both following lem-

mas,

Lemma 4.2. Under Assumptions (H1)-(H2) and (H6)-(H8), we have

(nφx(hn))
1/2
(
F̂ x(y)− F x(y)

)
D→N

(
0, σ2

Fx(y)
)

(13)

where

σ2
Fx(y) =

ay2F
x(y) (1− F x(y))

(ay1)
2

Lemma 4.3. Under Assumptions (H1)-(H3) and (H5)-(H9), we have

(nhnφx(hn))
1/2
(
ĥx(y)− hx(y)

)
D→N

(
0, σ2

hx(y)
)

(14)

where

σ2
hx(y) =

ay2h
x(y)

(ay1)
2

(1− F x(y))

∫
R
H2(t)dt

Lemma 4.4. Under Assumptions of Theorem 4.1, we have(
nh3nφx(hn)

)1/2 (
f̂ ′
x
(y)− f ′x(y)

)
D→N

(
0, σ2

f ′x(y)
)

(15)

where

σ2
f ′x(y) =

ay2f
x(y)

(ay1)
2

∫
R

(H ′(t))2dt
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Lemma 4.5. Under the hypotheses of Theorem 4.1, we have

V ar
[
f̂ ′
x

N (y)
]

=
σ2
f ′x(y)

nh3nφx(hn)
+ o

(
1

nh3nφx(hn)

)
,

V ar
[
F̂ xN (y)

]
= o

(
1

nhnφx(hn)

)
;

and

V ar
[
F̂ xD

]
= o

(
1

nhnφx(hn)

)
.

Lemma 4.6. Under the hypotheses of Theorem 4.1, we have

Cov(f̂ ′
x

N (y), F̂ xD) = o

(
1

nh3nφx(hn)

)
,

Cov(f̂ ′
x

N (y), F̂ xN (y)) = o

(
1

nh3nφx(hn)

)
and

Cov(F̂ xD, F̂
x
N (y)) = o

(
1

nhnφz(hn)

)
.

Remark 4.7.
It is clear that, the results of lemmas, Lemma 4.5 and Lemma 4.6 allows to write

V ar
[
F̂ xD − F̂ xN (y)

]
= o

(
1

nhnφx(hn)

)
The proofs of lemmas, Lemma4.2 can be seen in Belkhir et al. (2015), Lemma 4.5 and Lemma 4.6 see

Rabhi et al. (2015).

Finally, by this last result and (10), the following theorem follows:

Theorem 4.8. Under conditions (H1)-(H11) we have (θ ∈ S/fx(θ), 1− F x(θ) > 0)

(
nh3nφx(hn)

)1/2 (
θ̂ − θ

)
D→N

(
0,

σ2
h′(θ)

(h′′x(θ))2

)

with σ2
h′(θ) = hx(θ) (1− F x(θ))

∫
(H ′(t))2dt.

5. Proofs of technical lemmas

Proof. [Proof of lemma 3.4 and lemma 3.6] Let

ĥ′x(y) =
f̂ ′x(y)

1− F̂ x(y)
+ (ĥx(y))2, (16)

with

ĥ′x(y)− h′x(y) =

{(
ĥx(y)

)2
− (hx(y))

2

}
+

{
f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)

}
(17)
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for the first term of (17) we can write∣∣∣ (ĥx(y)
)2
− (hx(y))

2
∣∣∣ ≤ ∣∣∣ĥx(y)− hx(y)

∣∣∣.∣∣∣ĥx(y) + hx(y)
∣∣∣ (18)

because the estimator ĥx(·) converge a.co. to hz(·) we have

sup
y∈S

∣∣∣ (ĥx(y)
)2
− (hx(y))

2
∣∣∣ ≤ 2

∣∣∣hx(θ)
∣∣∣ sup
y∈S

∣∣∣ĥx(y)− hx(y)
∣∣∣ (19)

for the second term of (17) we have

f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)
=

1

(1− F̂ x(y))(1− F x(y))

{
f̂ ′x(y)− f ′x(y)

}
+

1

(1− F̂ x(y))(1− F x(y))

{
f ′x(y)

(
F̂ x(y)− F x(y)

)}
− 1

(1− F̂ x(y))(1− F x(y))

{
F x(y)

(
f̂ ′x(y)− f ′x(y)

)}
.

Valid for all y ∈ S. Which for a constant C <∞, this leads

sup
y∈S

∣∣∣ f̂ ′x(y)

1− F̂ x(y)
− f ′x(y)

1− F x(y)

∣∣∣ ≤

C

{
sup
y∈S

∣∣∣f̂ ′x(y)− f ′x(y)
∣∣∣+ sup

y∈S

∣∣∣F̂ x(y)− F x(y)
∣∣∣}

inf
y∈S

∣∣∣1− F̂ x(y)
∣∣∣ . (20)

Therefore, the conclusion of the lemma follows from the following results:

sup
y∈S
|F̂ x(y)− F x(y)| = O

(
hb1n
)

+Oa.co.

(√
log n

nφx(hn)

)
(21)

sup
y∈S
|f̂ ′x(y)− f ′x(y)| = O

(
hb1n
)

+Oa.co.

(√
log n

nh3nφx(hn)

)
(22)

sup
y∈S
|ĥx(y)− hx(y)| = O

(
hb1n
)

+Oa.co.

(√
log n

nhnφx(hn)

)
(23)

∃δ > 0 such that

∞∑
1

P
{

inf
y∈S
|1− F̂ x(y)| < δ

}
<∞. (24)

The proofs of (21) and (22) appear in Ferraty et al. (2006), and (23) is proven in Ferraty et al. (2008).

• Concerning (24) by equation (21), we have the almost complete convergence of F̂ x(y) to F x(y). More-
over,

∀ε > 0

∞∑
n=1

P
{
|F̂ x(y)− F x(y)| > ε

}
<∞.
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On the other hand, by hypothesis we have F x < 1, i.e.

1− F̂ x ≥ F x − F̂ x,

thus,
inf
y∈S
|1− F̂ x(y)| ≤ (1− sup

y∈S
F x(y))/2⇒ sup

y∈S
|F̂ x(y)− F x(y)| ≥ (1− sup

y∈S
F x(y))/2.

In terms of probability is obtained

P
{

inf
y∈S
|1− F̂ x(y)| < (1− sup

y∈S
F x(y))/2

}
≤

P
{

sup
y∈S
|F̂ x(y)− F x(y)| ≥ (1− sup

y∈S
F x(y))/2

}
<∞.

Finally, it suffices to take δ = (1 − sup
y∈S

F x(y))/2 and apply the results (21) to finish the proof of the

lemma.

Proof. [Proof of lemma 4.3] We can write for all x ∈ S

ĥx(y)− hx(y) =
f̂x(y)

1− F̂ x(y)
− fx(y)

1− F x(y)

=
1

D̂x(y)

{(
f̂x(y)− fx(y)

)
+ fx(y)

(
F̂ x(y)− F x(y)

)
−F x(y)

(
f̂x(y)− fx(y)

)}
,

=
1

D̂x(y)

{
(1− F x(y))

(
f̂x(y)− fx(y)

)
−fx(y)

(
F̂ x(y)− F x(y)

)}
(25)

with D̂x(y) = (1− F x(y))
(

1− F̂ x(y)
)

.

As a direct consequence of the Lemma 4.2, the result (26) (see Ezzahrioui and Ould-Säıd (2008)) and
the expression (25), permit us to obtain the asymptotic normality for the conditional hazard estimator.

(nhnφx(hn))
1/2
(
f̂x(y)− fx(y)

)
D→N

(
0, σ2

fx(y)
)

(26)

where

σ2
fx(y) =

ay2f
x(y)

(ay1)
2

∫
R

(H(t))2dt

Proof. [Proof of lemma 4.4] For i = 1, . . . , n, we consider the quantities Ki = K
(
h−1n d(x,Xi)

)
, H ′i(y) =

H ′
(
h−1n (y − Yi)

)
and let f̂ ′

x

N (y) (resp. F̂ xD) be defined as

f̂ ′
x

N (y) =
h−2n
nEK1

n∑
i=1

KiH
′
i(y) (resp. F̂ xD =

1

nEK1

n∑
i=1

Ki).



Mahiddine, Nedjadi and Rabhi / ProbStat Forum, Volume 09, January 2016, Pages 57–72 68

This proof is based on the following decomposition

f̂ ′
x
(y)− f ′x(y) =

1

F̂ xD

{(
f̂ ′
x

N (y)− Ef̂ ′
x

N (y)
)
−
(
f ′x(y)− Ef̂ ′

x

N (y)
)}

+
f ′x(y)

F̂ xD

{
EF̂ xD − F̂ xD

}
(27)

and on the following intermediate results.√
nh3nφx(hn)

(
f̂ ′
x

N (y)− Ef̂ ′
x

N (y)
)
D→N

(
0, σ2

f ′x(y)
)

(28)

where σ2
f ′z (x) is defined as in Lemma 4.4.

lim
n→∞

√
nh3nφx(hn)

(
Ef̂ ′

x

N (y)− f ′x(y)
)

= 0 (29)

√
nh3nφx(hn)

(
F̂ xD(y)− 1

)
P→ 0, as n→∞. (30)

• Concerning (28).

By the definition of f̂ ′
x

N (y), it follows that

Ωn =
√
nh3nφx(hn)

(
f̂ ′
x

N (y)− Ef̂ ′
x

N (y)
)

=

n∑
i=1

√
φx(hn)√
nhnEK1

(KiH
′
i − EKiH

′
i)

=

n∑
i=1

∆i,

which leads

V ar(Ωn) = nh3nφx(hn)V ar
(
f̂ ′
x

N (y)− E
[
f̂ ′
x

N (y)
])
. (31)

Now, we need to evaluate the variance of f̂ ′
x

N (y). For this we have for all 1 ≤ i ≤ n, ∆i(x, y) =
Ki(x)H ′i(y), so we have

V ar(f̂ ′
x

N (y)) =
1

(nh2nE[K1(x)])
2

n∑
i=1

n∑
j=1

Cov (∆i(x, y),∆j(x, y))

=
1

n (h2nE[K1(x)])
2V ar (∆1(x, y)) .

Therefore

V ar (∆1(x, y)) ≤ E
(
H ′

2
1(y)K2

1 (x)
)
≤ E

(
K2

1 (x)E
[
H ′

2
1(y)|X1 = x

])
.
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Now, by a change of variable in the following integral and by applying (H4) and (H7), one gets

E
(
H ′

2
1(y)|X1 = x

)
=

∫
R
H ′

2
(
y − u
hn

)
fx(u)du

≤ hn

∫
R
H ′

2
(t) (fx(y − hnt, x)− fx(y)) dt

+hnf
x(y)

∫
R
H ′

2
(t)dt

≤ h1+b2n

∫
R
|t|b2H ′2(t)dt+ hnf

x(y)

∫
R
H ′

2
(t)dt

= hn

(
o(1) + fx(y)

∫
R
H ′

2
(t)dt

)
. (32)

By means of (32) and the fact that, as n→∞, E
(
K2

1 (x)
)
−→ ay2φx(hn), one gets

V ar (∆1(x, y)) = ay2φx(hn)hn

(
o(1) + fx(y)

∫
R
H ′

2
(t)dt

)
.

So, using (H8), we get

1

n (h2nE[K1(x)])
2V ar (∆1(x, y)) =

ay2φx(hn)

n (ay1h
2
nφx(hn))

2hn

(
o(1) + fZ(x)

∫
R
H ′2(t)dt

)
= o

(
1

nh3nφx(hn)

)
+

ay2f
x(y)

(ay1)2nh3nφx(hn)

∫
R
H ′

2
(t)dt.

Thus as n→∞ we obtain

1

n (h2nE[K1(x)])
2V ar (∆1(x, y)) −→ ay2f

x(y)

(ay1)2nh3nφx(hn)

∫
R
H ′

2
(t)dt. (33)

Indeed

n∑
i=1

E∆2
i =

φx(hn)

hnE2K1
EK2

1 (H ′1)2 − φx(hn)

hnE2K1
(EK1H

′
1)

2
= Π1n −Π2n. (34)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φx(hn)

E2K1
E
{
K2

1

∫
H ′

2
(t) (f ′x(y − thn)− f ′x(y) + f ′x(y)) dt

}
.

Meanwhile, by (H1), (H3), (H7) and (H8), it follows that:

φx(hn)EK2
1

E2K1
−→
n→∞

ay2
(ay1)2

,

which leads

Π1n −→
n→∞

ay2f
x(y)

(ay1)2

∫
(H ′(t))2dt, (35)
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Regarding Π2n, by (H1), (H3) and (H6), we obtain

Π2n −→
n→∞

0. (36)

This result, combined with (34) and (35), allows us to get

lim
n→∞

n∑
i=1

E∆2
i = σ2

f ′x(y) (37)

Therefore, combining (33) and (36)-(37), (28) is valid.

• Concerning (29).

The proof is completed along the same steps as that of Π1n. We omit it here.

• Concerning (30). The idea is similar to that given by Belkhir et al. (2015).

By definition of F̂ xD, we have √
nh3nφx(hn)(F̂ xD − 1) = Ωn − EΩn,

where Ωn =

√
nh3

nφx(hn)
∑n

i=1Ki

nEK1
. In order to prove (30), similar to Belkhir et al. (2015), we only need

to proov V ar Ωn → 0, as n→∞. In fact, since

V ar Ωn =
nh3nφx(hn)

nE2K1
(nV arK1)

≤ nh3nφx(hn)

E2K1
EK2

1

= Ψ1,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3nφx(hn)→ 0, as n→∞.

It is clear that, the results of (21), (22), (24) and Lemma 4.5 permits us

E
(
F̂ xD − F̂ xN (y)− 1 + F x(y)

)
−→ 0,

and
V ar

(
F̂ xD − F̂ xN (y)− 1 + F x(y)

)
−→ 0;

then
F̂ xD − F̂ xN (y)− 1 + F x(y)

P−→ 0.

Moreover, the asymptotic variance of F̂ xD − F̂ xN (y) given in Remark 4.7 allows to obtain

nhnφx(hn)

σ2
Fx(y)

V ar
(
F̂ xD − F̂ xN (y)− 1 + E

(
F̂ xN (y)

))
−→ 0.

By combining result with the fact that

E
(
F̂ xD − F̂ xN (y)− 1 + E

(
F̂ xN (y)

))
= 0,

we obtain the claimed result.

Therefore, the proof of this Lemma is completed.



Mahiddine, Nedjadi and Rabhi / ProbStat Forum, Volume 09, January 2016, Pages 57–72 71

References

[1] Ahmad, I. A. (1976). Uniform strong convergence of the generalized failure rate estimate, Bull. Math. Statist. 17, 77–84.
[2] 19) Belkhir, N., Rabhi, A., and Soltani, S. (2015). Exact asymptotic errors of the hazard conditional

rate kernel, Journal of Statistics Applications & Probability Letters. An International Journal, 2(3), 191–204.
http://dx.doi.org/10.12785/jsapl/020303.

[3] Benhenni, K., Ferraty, F., Rachdi, M. and Vieu, P. (2007). Local smoothing regression with functional data, Comput.
Statist. 22, 353–369.

[4] Besse, P., Cardot, H. and Stephenson, D. (2000). Autoregressive forecasting of some functional climatic variations, Scand.
J. Statist. 27, 673–687.
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