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Abstract. In this paper we consider a positive stable AR(1) process. We focus on the tail behavior
and we based on the extreme quantile approach to derive an asymptotically normal estimator for the
autoregression parameter. A simulation study illustrates the main results.

1. Introduction

Suppose X1, . . . , Xn be a sequence of dependent random variables with common heavy tail distribution
function FX , i.e.,

lim
v→∞

1− FX(vx)

1− FX(v)
= x−α, (1)

for all x > 0, where 0 < α < 2 is the so-called tail index. Heavy tailed distributions including the Pareto,
Frchet and α-stable distributions have been employed in various fields such as internet traffic data, finance,
insurance, etc.; see De Haan and Ferreira (12), Embrechts et al. (9) for more applications. Under a slightly
stricter condition than (1), one can show that

1− FX(x) = cx−α(1 + o(1)), (2)

for some c > 0 as x → ∞. Defining the tail quantile function of FX as UX(t) := F←X (1 − 1/t) =
inf{s, FX(s) ≥ 1− 1/t}, for t > 1, so the condition (1) is equivalent to

lim
t→∞

UX(tx)

UX(t)
= x1/α, (3)

for any x > 0.
In order to be able to correctly assess the asymptotic non-degenerate behavior of semi parametric estimators
of extreme event parameters, we need more than just the first order condition (3). A convenient refinement
can be found in the assumption that there exists a constant ρ < 0 and a function g(t) with constant sign
for large values of t, such that

lim
t→∞

1−F (tx)
1−F (t) − x

−α

g(t)
= x−α

xρ − 1

ρ
, (4)
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for all x > 0 (see de Haan and Stadtmüller (11)).
A well known estimator for α is the so-called Hill’s estimator (15) defined as

α̂X =

{
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n

}−1

(5)

where X1,n < X2,n < . . . < Xn,n denote the order statistics of X1, . . . , Xn. Solving 1 − Fn(Xn−k,n) =

cX−α̂n−k,n, where Fn is the empirical distribution of F , one obtains an estimator for c as ĉ = k
nX

α̂
n−k,n.

Estimating the tail index for dependent data has received much attention, especially Hill’s estimator has
been studied (see Hsing (14), Rootzen et al. (21), Resnick and Stărică, (19; 20)).

Lévy-stable distributions are a rich class verified (1) and (4) of was introduced and characterized by
Paul Lévy, about 1925 in his study of normalized sums of independent random variables. It is a class of
distributions that allow skewness and fat tails; it includes those of Gaussian and Cauchy and has many in-
triguing mathematical properties. They were suggested like models for many types of physical and economic
systems.

The drawback for these distributions is the lack of explicit formulas for their densities allowing their
use, except three cases, in which, one knows their formulas (Gaussian, Cauchy and Lévy distributions).
Luckily, now there are reliable computer programs to compute Lévy-stable distribution functions, densities
and quantiles see for example [33] and [35] . Thus, it is possible to use Lévy-stable models in various practical
fields.

We can say that X ∼ S(α, β, γ, µ) is a stable law if and only if its characteristic function has the form

logψ(t) =


itµ− γ|t|α

{
1− iβ t

|t|
tan

π

2
α

}
, α 6= 1

itµ− γ|t|
{

1 + iβ
2

π

t

|t|
log |t|

}
, α = 1,

where the characteristic exponent (index of stability, tail exponent) α ∈]0, 2], a skewness parameter β ∈
[−1, 1], a dispersion parameter γ > 0, a location parameter µ ∈ R.

The family of stable laws S(α, 1, 1, µ) with 0 < α < 1, µ ≥ 0 define positive random variables with
support (µ,∞[, such distributions are used to model the non-negative quantity with impulsive property in
finance and physics.

Most applications in statistics need time dependence, let the AR(1) process

Xt = a Xt−1 + εt, (6)

where 0 < a < 1 and
∑∞
j=0 a

jδ < ∞ for 0 < δ < α and {εt} ∼ i.i.d. which, for simplicity, we take to be
positive stable S(α, 1, 1, µ), 0 < α < 1, µ ≥ 0. From Samorodnitsky and Taqqu (22) these random variables
have the following approximate of the tail distribution for x→∞

P(εt > x) ∼ 2

π
Γ(α) sin(

απ

2
)x−α, (7)

and X ∼ S(α, 1, 1/(1− aα), µ/(1− a)). If k →∞ , k/n→ 0 Resnick and Stărică (19) proved that applying
the Hill estimator (11) to the observed time series X1, X2, . . . , Xn from the model AR(1) in (6) yields a
consistent estimator of α. Other estimator for α which is the Pickands estimator (18) is given by :

α̂PX =

[
1

log 2
log

(
X(n−k+1,n) −X(n−2k+1,n)

X(n−2k+1,n) −X(n−4k+1,n)

)]−1

(8)

this estimator is consistent for dependent data (see Drees (6–8)). We can estimate the extreme index α
by the t-Hill estimator given by :
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α̂t−HX =


1

k

k∑
j=1

Xn−k,n

Xn−j+1,n

−1

− 1


−1

, (9)

introduced in Fabián and Stehĺık (10) which is robust in the i.i.d. case, its consistency for dependent data
was proven in Jordanova et al (16).

In Davis and Resnick (4), the authors establish the weak limit behavior for the sample analogue to
autocorrelation function under an assumption that the innovations have a regularly varying tail with index
α ∈]0, 2[, so that variance do not exist. These results may then be applied to obtain estimates for a. Barlett
and McCormick (1) provide estimates for the autoregression parameter a based on the ratio of two sample
values chosen with respect to an extreme value criteria, but the two estimators cited above have not a normal
limiting behavior. The rest of this paper is organized as follows. In Section 2, the new semi parametric of
a is introduced and its properties examined. In Section 3, we compute confidence bounds for a by some
simulations and we present a discussion on its robustness. Section 4 is devoted to the proofs.

2. Defining the estimator and the main result

We consider the AR(1) process in (6), from Mikosch and Samorodnitsky (17) we have

lim
x→∞

P(Xt > x)

P(εt > x)
= (1− aα)−1,

thus we have the following approximation

P(Xt > x) ∼ 2

π
Γ(α) sin(

απ

2
)(1− aα)−1x−α.

Hence we can estimate 2
πΓ(α) sin(απ2 )(1− aα)−1 by k

nX
α̂X
n−k,n, where k = k(n)→∞, k/n→ 0 and

α̂X =

[
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n

]−1

.

It follows that

ân =

(
1− 2

π
Γ(α̂) sin(

α̂π

2
)
n

k
X−̂αXn−k,n

)1/α̂X

(10)

We note that from Resnick and Starica (20), we have

√
k(α̂X − α)

D−→ N

(
0, α2 (1 + aα)

(1− aα)

)
, (11)

provided that as n→∞
k →∞, k/n→ 0√
kg(U(n/k))→ 0

either lim supn→∞ n/k3/2 <∞ or lim infn→∞ n/k3/2 > 0,

(12)

with
D−→ stands for convergence in distribution.

The asymptotic normality of ân is established in the following theorem.

Theorem 2.1. Suppose (6) and (12) hold then

√
k

log (n/k)
(ân − a)

D−→ N

0,
α2(1 + aα)a2−2α(1− aα)3(

2

π
Γ(α) sin(

απ

2
)

)2


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3. Simulation study

Tail index estimation depends for its accuracy on a precise choice of the sample fraction, i.e., the number
of extreme order statistics on which the estimation is based. The most common methods of adaptive choice
of the threshold k are based on the minimization of some kind of MSE’s estimates :

kopt = arg min
k
E(α̂− α)2 (13)

We mention the pioneering papers by Hall and Welsh (13), Danielsson et al (3) and Beirlant et al (2).
In the first part, to illustrate the performance of our estimator ân, we generate 100 replications of the

time series (X1, . . . , Xn) of sizes 1000 and 3000, where Xt is an AR(1) process satisfying

Xt = aXt−1 + εt, 1 < t < n, (14)

with 0 < a < 1, and εt ∼ S(α, 1, 1, 4), 0 < α < 1 , note that we use (13) for compute the values of
the optimal fraction integer kopt, the results are presented in Table 1 and Table 2, where lb and ub stand
respectively for lower bound and upper bound of the confidence interval.

Table 1: Performance and 95% confidence intervals for a = 0.2

α 0.4 0.5

n 1000 3000 1000 3000
ân 0.2186259 0.1863074 0.2145797 0.2098868

Bias 0.01862593 -0.01369255 0.01457966 0.009886798
RMSE 0.1479794 0.08530847 0.09854816 0.07335559
lb 0.1849442 0.1673934 0.1395198 0.1603074
ub 0.2523076 0.2052215 0.2896395 0.2594662

length 0.06736343 0.03782804 0.1501196 0.09915873

Table 2: Performance and 95% confidence intervals for a = 0.3

α 0.4 0.5

n 1000 3000 1000 3000
ân 0.3321577 0.3202625 0.3047179 0.2990464

Bias 0.03215773 0.02026246 0.004717884 -0.0009535607
RMSE 0.1628001 0.1478351 0.09987891 0.08413913
lb 0.280616 0.2763420 0.2348950 0.2548524
ub 0.3836995 0.3641830 0.3745407 0.3432405

length 0.1030835 0.08784099 0.1396457 0.08838803

In the second part in this study, we generate 100 replicates of sizes 1000 from the AR(1) in (14) with
a = 0.2, we compare the bias and the root mean squared error (RMSE) of the three estimators of a (our
estimator ân, âPn which we use the Pickands estimator in (8) for estimating the tail index α and ât−Hn which
we use the t-Hill estimator in (9)). The results are presented in Table 3. We remark that our estimator ân
has the smallest bias and the ât−Hn estimator has the smallest rmse.

Table 3: Comparison of the estimators of autoregressive parameter

α 0.4 0.5
Bias RMSE Bias RMSE

ân 0.00348134 0.1261292 0.0003560953 0.09668266
âPn 0.01371989 0.1582915 0.02393854 0.1773766
ât−Hn -0.03986046 0.05898246 -0.000885142 0.06662949
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In the third part in this study, we made 100 samples of n = 1000 observations from the AR(1) in (14)
for α = 0.5, a = 0.2. Then we plotted in figure 1 the Hill and the t-Hill plots of the averages of the
corresponding estimators together of α for different k, we remark that both estimators have similar behavior
for fixed number of upper order statistics and show deviations from the true value of the extreme index
α = 0.5 as k is increased.
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Figure 1: Extreme index estimation by Hill’s estimator (solid line) and t-Hill estimator (dotted line), horizontal line is the true
value α = 0.5.
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Figure 2: Autoregressive parameter estimation using Hill’s estimator (solid line) and t-Hill estimator (dotted line), horizontal
line is the true value a = 0.2.



Fawzi and Hakim / ProbStat Forum, Volume 09, April 2016, Pages 73–79 78

In figure 2 we see that both plots of the ân estimator are not resistant to large observations. Hence
our estimator ân for the autoregressive parameter it not robust using the two estimators Hill and t-Hill of
extreme index.

4. Proof

Note that

k
nX

α̂X
n−k,n −

2
πΓ(α) sin(απ2 )(1− aα)−1 =

(
k
nX

α̂X
n−k,n −

k
nX

α
n−k,n

)
+ k
nU

α(n/k)
(
Xαn−k,n
Uα(n/k) − 1

)
+ k
nU

α(n/k)− 2
πΓ(α) sin(απ2 )(1− aα)−1

Using Mean-Value Theorem we find

k
nX

α̂X
n−k,n −

2
πΓ(α) sin(απ2 )(1− aα)−1 =

(
k
nX

α
n−k,n(α̂X − α) logXn−k,n

)
(1 + oP (1))

+ k
nU

α(n/k)
(
Xαn−k,n
Uα(n/k) − 1

)
+ k
nU

α(n/k)− 2
πΓ(α) sin(απ2 )(1− aα)−1

From Drees (8) we have
Xα
n−k,n

Uα(n/k)
= 1 +OP (1/

√
k) and using (11) we obtain

√
k

log (n/k)

(
k

n
X α̂X
n−k,n −

2

π
Γ(α) sin(

απ

2
)(1− aα)−1

)
D−→ N

(
0, α4 (1 + aα)

(1− aα)

)
By application the delta method, it follows that the estimator ân defined in (10) satisfies the following result

√
k

log (n/k)
(ân − a)

D−→ N

(
0, α4 (1 + aα)

(1− aα)

[
f ′
(

2

π
Γ(α) sin(

απ

2
)(1− aα)−1

)]2
)
,

where f(x) =
(

1−
2
πΓ(α) sin(απ2 )

x

)1/α

. This completes the proof of Theorem 2.1.
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