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Abstract. Finite mixture models (FMM) have received increasing attention in recent years and have
proven to be useful in modeling heterogeneous data with a finite number of unobserved sub-population.
FMM are a powerful and flexible tool for modeling complex data. In this article, we study the asymptotic
distribution of the appropriately linear normalized coordinatewise maximum and minimum under mul-
tivariate FMM from independent, but not obligatory identically distributed random vectors. We obtain
sufficient conditions for this weak convergence, as well as the limit forms. Sufficient conditions for this
convergence when the components of the mixture have different linear normalization have been derived.
Illustrative examples are provided, which lend further support to our theoretical results.

1. Introduction

In the last few years, much attention has been paid to the study of the order statistics from independent,
but non-identically distributed (INID) random variables (rvs). An earlier result and perhaps the most
important one for the asymptotic behaviour of order statistics based on INID rvs is due to Mejzler [1949,
1953], who proved that a non-degenerate distribution function (df) H(x) will be, under some uniformity
assumptions (UAs), a limiting distribution of the suitably normalized maximum from some sequence of
independent rvs if and only if logH(x) is concave, or

ω(H) = sup{x : H(x) < 1} <∞ and logH(ω(H)− e−x) is concave, x > 0, or
α(H) = inf{x : H(x) > 0} > −∞ and logH(α(H) + ex) is concave, x > 0.

(1.1)

And a non-degenerate df L(x) will be, under some UAs, a limiting distribution of the suitably normalized
minimum from some sequence of independent rvs if and only if log[1− L(x)] is concave, or

ω(L) is finite and log{1− L[ω(L)− e−x]} is concave, x > 0, or
α(L) is finite and log{1− L[α(L) + ex)]} is concave, x > 0.

(1.2)

The reader can refer to Weissman (1975a, 1975b) and Galambos (1978, 1987).
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Consider n m-dimensional distributed random vectors Xj = (X1,j , X2,j , ..., Xm,j), j = 1, 2, ..., n, with
respective dfs Fj(x) = Fj(x1, x2, ..., xm). The coordinatewise maximum vector Zn is defined by Zn =
(Z1,n, Z2,n, ..., Zm,n), where Zs,n = max{Xs,1, Xs,2, ..., Xs,n}, s = 1, 2, ...,m. The df of the vector Zn can be
explicitly written by

Hn(x) = P (Zn ≤ x) =

n∏
j=1

Fj(x).

Moreover, the df of the marginal vector Zsk,n = (Zs1,n, Zs2,n, ..., Zsk,n), where sk = (s1, s2, ..., sk), 1 ≤ s1 <
s2 < ... < sk ≤ m, 1 ≤ k ≤ m, is given by Hsk,n(xsk) =

∏n
j=1 Fsk,j(xsk), where

Fsk,j(xsk) = P (Xs1,j ≤ xs1 , Xs2,j ≤ xs2 , ..., Xsk,j ≤ xsk) is the corresponding marginal of the df Fj(x). We
adopt here, and throughout this paper, the convention that the components of the numerical vectors x =
(x1, x2, ..., xk) and y = (y1, y2, ..., yk) are signified by a subscript and basic arithmetical operations are always
meant componentwise. Thus, x ≤ y means xs ≤ ys, s = 1, 2, ..., k, x + y = (x1 + y1, ..., xk + yk), x y =
(x1y1, ..., xkyk) and x/y = (x1/y1, ..., xk/yk). Let α be the left end vector and ω be the right end vector. On
the other hand, the special vectors 0 = (0, 0, ..., 0) and ±∞ = (±∞,±∞, ...,±∞) will be used. Finally, we
use the abbreviations Fsm,j(xsm) = Fj(x) and Fs1,j(xs1) = Fs,j(xs), if s1 = (s), 1 ≤ s ≤ m.

Recently, Barakat et al. (2012) discussed the limit behaviour of multivariate maximum from n m-
dimensional INID random vectors, who proved that, under some UAs, which are the kind of restrictions on
the individual terms F1(x), F2(x), ..., as well as on some sequences gn(x) = anx+bn of linear transformations,
where an = (a1,n, a2,n, ..., am,n) > 0 and bn = (b1,n, b2,n, ..., bm,n), the limiting df for the vector Zn is given
by

H(x) = exp(−u(t;x)),

where

u(t;x) =

m∑
k=1

(−1)k+1
∑

1≤s1<s2<...<sk≤m

usk(t;xsk)

and

usk(t;xsk) = lim
n→∞

[nt]∑
j=1

[1− Fsk,j(gn(xsk))], k = 1, 2, ...,m,

exists and is finite for all 0 < t ≤ 1, whenever it is finite for t = 1.

1.1. Finite mixture models (FMM)

Most statistical methods assume that you have a sample of observations, all of which come from the
same distribution, and that you are interested in modeling that one distribution. If you actually have
data from more than one distribution with no information to identify which observation goes with which
distribution, standard models wont help you. However, FMM might come to the rescue. They use a mixture
of parametric distributions to model data, estimating both the parameters for the separate distributions and
the probabilities of component membership for each observation.

Consider finite r different populations with multivariate dfs Fj,i(x), Fj,2(x), ..., Fj,r(x) from which we
have collected the sample data, then the combined r components sample data has the following multivariate
df

Fj(x) d
=

r∑
i=1

piFj,i(x), (1.3)

where

Fj,i(x) = 1−
m∑
k=1

(−1)k+1
∑

1≤s1<s2<...<sk≤m

Gsk,j,i(xsk),

Gsk,j,i(xsk) = P (Xs1,j,i > xs1 , Xs2,j,i > xs2 , ..., Xsk,j,i > xsk) is the survival function of the df Fsk,j,i(xsk).
In this mixture, the ith component (df of the ith subpopulation) is Fj,i(x), the mixing proportions pi >
0, i = 1, ..., r are such that

∑r
i=1 pi = 1 and ” d

= ” denotes the equality in distribution.
In addition, FMM provide the following features:
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• FMM provide a flexible framework for analyzing a variety of data.

• FMM provide parametric alternatives that describe the unknown distributions in terms of mixtures of
known distributions.

• FMM enable you to assess the probabilities of events or simulate draws from the unknown distribution
the same way you do when your data are from a known distribution.

• FMM provide a parametric modeling approach to one-dimensional cluster analysis.

• FMM provide a mechanism that can account for unobserved heterogeneity in the data.

• FMM are often used to study data from a population that is suspected to be composed of a number of
homogeneous subpopulations. For example, mixture distributions are used routinely to accommodate
the genetic heterogeneity thought to underlie many human diseases.

• FMM have been not only widely applied to classification, clustering, and pattern identification prob-
lems for independent data, but could also be used for longitudinal data to describe differences

The reader can refer to Everitt and Hand (1981), Titterington et al. (1985), Lindsay (1995) and McLach-
lan and Basford (1988). Finally, AL-Hussaini and El-Adll (2004) obtained the asymptotic distribution of
normalized maximum under finite mixture models.

1.2. UAs under FMM (UAM)

In this subsection, we extend the UAs of Barakat et al. (2012) from multivariate to finite multivariate
mixture. We say that a sequence {Fj,i(x)} of dfs and the sequences gn(x) of normalizing constants satisfy
the UAM for maximum vector Zn if, for i = 1, 2, ..., r

lim
n→∞

max
1≤j≤n

{[1− Fsk,j,i(gn(xsk))], gn(xsk) > αsk(Fsk,j,i)} = 0, k = 1, 2, ...,m, (C1)

and for any fixed number 0 < t ≤ 1,

lim
n→∞

[nt]∑
j=1

[1− Fsk,j,i(gn(xsk))] = usk,i(t;xsk), k = 1, 2, ...,m, (C2)

exists and is finite for all 0 < t ≤ 1, whenever it is finite for t = 1. Under UAMs (C1, C2) for maximum the
limit df of the maximum for the ith subpopulation of the mixture is given by Hi(x) = exp(−ui(t;x)). Here,
x > α(Hi(x)).

Remark 1.1. For a sequence Tn(xsk) of linear transformations, the UAM for the multivariate minimum
(Wn) under finite mixture is similarly defined for the maximum except that Fsk,j,i(xsk) is to be replaced by
1 − Fsk,j,i(xsk) in both limit relations (C1, C2), and x < ω(Li(x)), where Li(x) is the limiting distribution
of T−1n (Wn).

Remark 1.2. Since, any results of minimum can be easily deduced from the corresponding results of maxi-
mum, the emphasis of our study will be mainly on the maximum.

We will close this section by the following important lemma, where the proof of our main results (given
below) depends on the fact in the following lemma (cf. Barakat 2002).

Lemma 1.3. For any 0 ≤ yj ≤ 1
2 , j = 1, 2, ..., n, we have

exp

−(1 + max
1≤j≤n

yj)

n∑
j=1

yj

 ≤ n∏
j=1

(1− yj) ≤ exp

− n∑
j=1

yj

 .

The right-hand inequality remains to hold for all 0 ≤ yj ≤ 1.
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2. Main results

The results in the paper are formulated and obtained in analogous way to Pancheva (1985), who discusses
monotone normalizations and works without mixing. The possible non-degenerate limit dfs of maximum and
minimum based on a random sample drawn from multivariate finite mixture populations with r components
normalized by the same sequence of linear normalization, as well as, the sufficient conditions for the existence
of these limit dfs are given in Theorems 1 and 3. Theorems 2 and 4 are intended to compliment the results
of Theorems 1 and 3 by considering multivariate finite mixture populations with r components normalized
by different sequence of linear normalization.

2.1. Asymptotic maximum from INID random vectors under FMM

Theorem 2.1. Let X1, X2, ..., Xn be INID random vectors respect to dfs Fj(x), j = 1, 2, ..., n given by (1.3).
Then under the UAM for the maximum, we get

P [Zn ≤ gn(x)] w−→n H(x) =

r∏
i=1

[Hi(x)]pi , max
1≤i≤r

α(Hi(x)) < x < max
1≤i≤r

ω(Hi(x)), (2.1)

where {gn(x)}∞n=1 is a sequence of linear transformations, Hi(x), i = 1, 2, ..., r are a non-degenerate dfs and
w−→n means converges weakly as n→∞.

Proof. Since

P [Zn ≤ gn(x)] =

n∏
j=1

Fj(gn(x)),

then from (1.3) Fj(gn(x)) =
∑r
i=1 piFj,i(gn(x)), we get

P [Zn ≤ gn(x)] =

n∏
j=1

r∑
i=1

piFj,i(gn(x)).

P [Zn ≤ gn(x)] =

n∏
j=1

(
1−

[
1−

r∑
i=1

piFj,i(gn(x))

])
.

By putting yj = 1−
∑r
i=1 piFj,i(gn(x)) in Lemma 1, we have

exp

−(1 + max
1≤j≤n

(
1−

r∑
i=1

piFj,i(gn(x))

))
n∑
j=1

(
1−

r∑
i=1

piFj,i(gn(x))

) ≤
P [Zn ≤ gn(x)] ≤ exp

− n∑
j=1

(
1−

r∑
i=1

piFj,i(gn(x))

) .
exp

−(1 +

r∑
i=1

pi max
1≤j≤n

[1− Fj,i(gn(x))]

) r∑
i=1

pi

n∑
j=1

[1− Fj,i(gn(x))]

 ≤
P [Zn ≤ gn(x)] ≤ exp

− r∑
i=1

pi

n∑
j=1

(1− Fj,i(gn(x)))

 .
By taking limit as n→∞ and apply UAM for the maximum (C1, C2), we get

P [Zn ≤ gn(x)] w−→n exp

(
−

r∑
i=1

piui(t;x)

)
=

r∏
i=1

[Hi(x)]pi ,
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which has to be proved.

Remark 2.2. From Theorem 1, we have the following cases of the df H(x) in (2.1)

H(x) =

 0 if, x ≤ max
1≤i≤r

α(Hi(x)),

1 if, x ≥ max
1≤i≤r

ω(Hi(x)).

Remark 2.3. From Theorem 1, if Hi(x) = H(x) for i = 1, 2, ..., r, then

P [Zn ≤ gn(x)] w−→n H(x) = exp

 m∑
k=1

(−1)k
∑

1≤s1<s2<...<sk≤m

usk(t;xsk)

 .

Theorem 2.4. Let X1, X2, ..., Xn be INID random vectors respect to dfs Fj(x), j = 1, 2, ..., n given by (1.3)
and there exist sequences {gn(x)}∞n=1 and {gi,n(x)}∞n=1 of linear transformations such that, for i = 1, 2, ..., r,

(C∗1 ) UAM for the maximum is satisfied under {gi,n(x)}∞n=1,

(C∗2 ) limn→∞
∑[nt]
j=1[Fj,i(gn(x))− Fj,i(gi,n(x))] = vi(t;x).

Then

P [Zn ≤ gn(x)] w−→n
r∏
i=1

exp [−pi(ηi(t;x)− vi(t;x))] , (2.2)

where ηi(t;x) = limn→∞
∑[nt]
j=1[1− Fj,i(gi,n(x))].

Proof. Since

P [Zn ≤ gn(x)] =

n∏
j=1

Fj(gn(x))

and from (1.3) Fj(gn(x)) =
∑k
i=1 piFj,i(gn(x)), then we have

P [Zn ≤ gn(x)] =

n∏
j=1

k∑
i=1

pi [Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))]

P [Zn ≤ gn(x)] =

n∏
j=1

[
1−

(
1−

k∑
i=1

pi[Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))]

)]
.

By putting yj = 1−
∑r
i=1 pi [Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))] in Lemma 1, we have

exp

[
−

(
1 + max

1≤j≤n

(
1−

k∑
i=1

pi [Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))]

))
×

n∑
j=1

(
1−

k∑
i=1

pi [Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))]

) ≤ P [Zn ≤ gn(x)]

≤ exp

− n∑
j=1

(
1−

k∑
i=1

pi [Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))]

) .
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exp

[
−

(
1 +

k∑
i=1

pi max
1≤j≤n

(1− [Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))])

)
×

k∑
i=1

pi

n∑
j=1

(1− [Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))])

 ≤ P [Zn ≤ gn(x)]

≤ exp

− k∑
i=1

pi

n∑
j=1

(1− [Fj,i(gi,n(x)) + (Fj,i(gn(x))− Fj,i(gi,n(x)))])

 .
By taking limit as n→∞ and apply UAM for the maximum (C1, C2), we get

P [Zn ≤ gn(x)] w−→n exp

(
−

r∑
i=1

pi(ηi(t;x)− vi(t;x))

)
or, equivalently

P [Zn ≤ gn(x)] w−→n
r∏
i=1

exp (−pi(ηi(t;x)− vi(t;x))) ,

which completes the proof.

2.2. Asymptotic minimum from INID random vectors under FMM

As Remark 2 pointed out, since, any results of minimum can be easily deduced from the corresponding
results of maximum, the following results (Theorems 3 and 4) can be obtained in a simple way as Theorems
1 and 2.

Theorem 2.5. Let X1, X2, ..., Xn be INID random vectors respect to dfs Fj(x), j = 1, 2, ..., n given by (1.3).
Then under UAM for the minimum we get

P [Wn ≤ Tn(x)] w−→n L(x) = 1−
r∏
i=1

[1− Li(x)]pi , max
1≤i≤r

α(Li) < x < max
1≤i≤r

ω(Li) (2.3)

where {Tn(x)}∞n=1 is a sequence of linear transformations and Li(x), i = 1, 2, ..., r are a non-degenerate dfs.

Remark 2.6. From Theorem 3, we have the following cases of the df L(x) in (2.3)

L(x) =

 0 if, x ≤ max
1≤i≤r

α(Li(x))

1 if, x ≥ max
1≤i≤r

ω(Li(x)).

Remark 2.7. From Theorem 3, if Li(x) = L(x) for i = 1, 2, ..., r, then

P [Wn ≤ Tn(x)] w−→n L(x).

Theorem 2.8. Let X1, X2, ..., Xn be INID random vectors respect to dfs Fj(x), j = 1, 2, ..., n given by (1.3)
and there exist sequences {Tn(x)}∞n=1 and {Ti,n(x)}∞n=1 of linear transformation such that, for i = 1, 2, ..., r,

(C∗1) UAM of the minimum is satisfied under {Ti,n(x)}∞n=1,

(C∗2) limn→∞
∑[nt]
j=1[Fj,i(Tn(x))− Fj,i(Ti,n(x))] = τi(t;x).

Then

P [Wn ≤ Tn(x)] w−→n 1−
r∏
i=1

exp(−pi(ϕi(t;x)− τi(t;x))), (2.4)

where ϕi(t;x) = limn→∞
∑[nt]
j=1 Fj,i(Ti,n(x)).
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3. Applications

Example 3.1. Let Xj = (X1,j , X2,j) be INID random vectors respect to dfs

Fj(x1, x2) = pFj,1(x1, x2) + (1− p)Fj,2(x1, x2), j = 1, 2, ..., n, 0 < p < 1,

where

Fj,1(x1, x2) = 1− e−jx1 − e−jx2 +
1

ejx1 + ejx2 − 1
, x1, x2 ≥ 0, j = 1, 2, ..., n

and

Fj,2(x1, x2) =
1

e−jx1 + e−jx2 + 1
, −∞ < x1, x2 <∞, j = 1, 2, ..., n.

The normalizing transformations of the components may be chosen as,

gn(x1, x2) =

(
1

j
x1 +

1

j
log

n

2
,

1

j
x2 +

1

j
log

n

2

)
,

g1,n(x1, x2) =

(
1

j
x1 +

1

j
log n,

1

j
x2 +

1

j
log n

)
and

g2,n(x1, x2) =

(
1

j
x1 +

1

j
log

n

4
,

1

j
x2 +

1

j
log

n

4

)
.

Firstly, we note that

lim
n→∞

max
1≤j≤n

[1− Fj,i(gi,n(x1, x2))] = lim
n→∞

max
1≤j≤n

[1− F`,j,i(gi,n(x`))] = 0, ` = 1, 2, i = 1, 2,

lim
n→∞

n∑
j=1

[1− F`,j,1(g1,n(x`))] = e−x` , lim
n→∞

n∑
j=1

[1− F`,j,2(g2,n(x1))] = 4e−x` , ` = 1, 2

lim
n→∞

n∑
j=1

[1− Fj,1(g1,n(x1, x2))] =
1

ex1 + ex2
, lim
n→∞

n∑
j=1

[1− Fj,2(g2,n(x1, x2))] = 0,

which are satisfies condition C∗1 , and

lim
n→∞

n∑
j=1

[Fj,1(gn(x1, x2))− Fj,1(g1,n(x1, x2))] = v1(x1, x2) = −e−x1 − e−x2 +
1

ex1 + ex2
,

lim
n→∞

n∑
j=1

[Fj,2(gn(x1, x2))− Fj,2(g2,n(x1, x2))] = v2(x1, x2) = 2(e−x1 + e−x2),

which are satisfies condition C∗2 . On the other hand, we have

lim
n→∞

n∑
j=1

[1− Fj,1(g1,n(x1, x2))] = η1(x1, x2) = e−x1 + e−x2 − 1

ex1 + ex2

and

lim
n→∞

n∑
j=1

[1− Fj,2(g2,n(x1, x2))] = η2(x1, x2) = 4(e−x1 + e−x2).

Now, applying Theorem 2, we get

P [(Z1,n, Z2,n) ≤ gn(x1, x2)] w−→n exp

[
−2

(
e−x1 + e−x2 − p

ex1 + ex2

)]
.
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Example 3.2. Let Xj = (X1,j , X2,j) be INID random vectors respect to dfs

Fj(x1, x2) = pFj,1(x1, x2) + (1− p)Fj,2(x1, x2), j = 1, 2, ..., n, 0 < p < 1,

where

Fj,1(x1, x2) = 1− e−jx1 − e−jx2 +
1

ejx1 + ejx2 − 1
, x1 ≥ 0, x2 ≥ 0, j = 1, 2, ..., n

and

Fj,2(x1, x2) =
1

e−jx1 + e−jx2 + 1
, −∞ < x1, x2 <∞, j = 1, 2, ..., n.

One can choose the linear normalization,

gn(x1, x2) =

(
1

j
x1 +

1

j
log n,

1

j
x2 +

1

j
log n

)
.

Firstly, we note that

lim
n→∞

max
1≤j≤n

[1− Fj,i(gn(x1, x2))] = lim
n→+∞

max
1≤j≤n

[1− F`,j,i(gn(x`))] = 0, ` = 1, 2, i = 1, 2,

which are satisfies condition C1, and

lim
n→∞

n∑
j=1

[1− F`,j,i(gn(x`))] = e−x` , ` = 1, 2, i = 1, 2,

lim
n→∞

n∑
j=1

[1− Fj,1(gn(x1, x2))] =
1

ex1 + ex2
, lim
n→∞

n∑
j=1

[1− Fj,2(gn(x1, x2))] = 0,

which are satisfies condition C2. Now, applying Theorem 1, we get

P [(Z1,n, Z2,n) ≤ gn(x1, x2)] w−→n exp

(
−e−x1 − e−x2 +

p

ex1 + ex2

)
.

Example 3.3. Let Xj = (X1,j , X2,j , X3,j) be INID random vectors respect to dfs

Fj(x1, x2, x3) =

3∑
i=1

piFj,i(x1, x2, x3), j = 1, 2, ..., n, 0 < pi < 1,

where

Fj,1(x1, x2, x3) = 1− e−jx1 − e−jx2 − e−jx3 +
1

ejx1 + ejx2
+

1

ejx1 + ejx3 − 1
+

1

ejx2 + ejx3 − 1

− 1

ejx1 + ejx2 + ejx3 − 1
, x1, x2, x3 ≥ 0, j = 1, 2, ..., n,

Fj,2(x1, x2, x3) =
1

e−jx1 + e−jx2 + e−jx3 + 1
, −∞ < x1, x2, x3 <∞, j = 1, 2, ..., n

and

Fj,3(x1, x2, x3) = 1− e−jx1 − e−jx2 − e−jx3 + e−jx1−jx2−j2x1x2 + e−jx1−jx3−j2x1x3 + e−jx2−jx3−j2x2x3

−e−jx1−jx2−jx3−j3x1x2x3 , x1, x2, x3 ≥ 0, j = 1, 2, ..., n.

One can choose the linear normalization,

gn(x1, x2, x3) =

(
1

j
x1 +

1

j
log n,

1

j
x2 +

1

j
log n,

1

j
x3 +

1

j
log n

)
.
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Firstly, we note that all functions are satisfies conditions C1, C2 and

H1(x1, x2, x3) = exp

[
−e−x1 − e−x2 − e−x3 +

1

ex1 + ex2 + ex3

]
,

H2(x1, x2, x3) = exp
(
−e−x1 − e−x2 − e−x3

)
,

H3(x1, x2, x3) = exp
(
−e−x1 − e−x2 − e−x3

)
.

Applying Theorem 1, we get

P [(Z1,n, Z2,n, Z3,n) ≤ gn(x1, x2, x3)] w−→n exp

(
−e−x1 − e−x2 − e−x3 +

p1
ex1 + ex2 + ex3

)
.

Example 3.4. Consider n m-dimensional random vectors Xj = (X1,j , X2,j , ..., Xm,j), j = 1, 2, ..., n, with
respective dfs Fj(x) = pFj,1(x) + (1− p)Fj,2(x), j = 1, 2, ..., n, 0 < p < 1, where

Fj,1(x) = 1− exp(−λj max(x1, x2, ..., xm)), 0 ≤ x ≤ ∞,

Fj,2(x) = exp

−( m∑
s=1

e−xs/λj

)λj , −∞ ≤ x ≤ ∞
and

λj =

{
1, if j is odd,
2, if j is even.

Clearly, for any 1 ≤ k ≤ m, sk = (s1, s2, ..., sk) and 1 ≤ s1 < s2 < ... < sk ≤ m, we have

n∑
j=1

(1− Fsk,j,1(xsk)) =

{
n
2

(
e−2max(xs1 ,xs2 ,...,xsk ) + e−max(xs1 ,xs2 ,...,xsk )

)
, if n is even,

n−1
2 e−2max(xs1 ,xs2 ,...,xsk ) + n+1

2 e−max(xs1 ,xs2 ,...,xsk ), if n is odd

and
n∑
j=1

(1− Fsk,j,2(xsk)) =

{
n
2 (A+B) , if n is even,
n−1
2 A+ n+1

2 B, if n is odd,

where

A = exp
[
−
(
e−xs1 + e−xs2 + ...+ e−xsk

)]
and B = exp

[
−
(
e

−xs1
2 + e

−xs2
2 + ...+ e

−xsk
2

)2]
.

Therefore, by using the normalizing constants as,n = 1 and bs,n = log n
2 , s = 1, 2, ...,m, we have

lim
n→∞

max
1≤j≤n

[1− Fsk,j,1(gn(xsk))] = lim
n→∞

(
2

n
e−λj max(xs1 ,xs2 ,...,xsk )

)
= 0,

lim
n→∞

max
1≤j≤n

[1− Fsk,j,2(gn(xsk))] = lim
n→∞

[
1− exp

(
− 2

n

(
e

−xs1
λj + e

−xs2
λj + ...+ e

−xsk
λj

)λj)]
= 0,

which implies that the uniformity assumption C1 is satisfied. On the other hand, with the same normalizing
constants, we get

lim
n→∞

n∑
j=1

[1− Fsk,j,1(gn(xsk))] = usk,1(xsk) = e−max(xs1 ,xs2 ,...,xsk )

and

lim
n→∞

n∑
j=1

[1− Fsk,j,2(gn(xsk))] = usk,2(xsk) = e−xs1 + e−xs2 + ...+ e−xsk ,
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which implies that the uniformity assumption C2 is satisfied. From the above discussion, it is easy to show
that

H1(x) = exp

 m∑
k=1

(−1)k
∑

1≤s1<s2<...<sk≤m

usk,1(xsk)

 = e−min(x1,x2,...,xm)

and

H2(x) = exp

 m∑
k=1

(−1)k
∑

1≤s1<s2<...<sk≤m

usk,2(xsk)

 = e−x1 + e−x2 + ...+ e−xm .

Now, applying Theorem 1, we get

P [Zn ≤ gn(x)] w−→n exp
[
pe−min(x1,x2,...,xm) + (1− p)(e−x1 + e−x2 + ...+ e−xm)

]
.
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