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Abstract. In this paper we introduce a new class of discrete distributions with support belonging to
Z. It is a special case of well known mixtures. Various mathematical properties of the new class are
derived. Estimation procedure, under additional parametric assumption, is also assessed by a numerical
study. Finally, a real data example is considered.

1. Introduction

Let k be a fixed positive integer. A parametric family of k mixture densities has a probability density
function defined as follow

.
p(z) = Z a;pi(x),

where p; is a probability distribution, a; > 0 and Zle «a; = 1. For more background information on the
finite mixture distributions we refer to McLachlan and Batsford (1988) and Johnson et al. (2005). The
finite discrete mixture distributions occur in many practical situations. For example, in actuarial statistics
they are used for modeling the number of claims incurred during a given period for an insurance portfolio.
The finite discrete mixture distributions topic have been largely investigated in literature, in particular, the
mixture of standard discrete distribution, such as Binomial, Geometric, and Poisson. For a literature review,
we refer to Rider (1961), Blischke (1962), Everitt (1981), Harris (1983), Pritchard et al. (2000), Karlis and
Xekalaki (2005) and Titterington (2005).

The aim of this paper is to introduce, based on the well known finite mixture distribution approach, a
new class of discrete distributions with support belonging to Z, denoted by Parametric Mixture(p)—7Z class.

Definition 1.1. Let p € (0,1). We say that a random variable Z has a distribution belonging to the
Parametric Mixture(p)— class if and only if there exist two discrete non-negative random variables X and
Y and an event A independent of X and Y with P(A) = p such that the following equality in distribution is
satisfied :

Z =1,X - I7Y,
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where 14 denotes the indicator random variable and A the contrary event of A.

Such distribution is associated with a statistical population which is mixture of two subpopulations :
positive values (with p as mixing proportion and associated distribution that of the random variable X') and
negative values (with 1 — p as mixing proportion and associated distribution that of the random variable
Y).

The contents of this paper are organized as follows. Various mathematical properties of random variable
belongs to the Parametric Mixture(p)— are derived in Section 2. These include, the probability mass function
(pmf), the cumulative distribution function, the failure functions, the probability generating function and
moments, the mean absolute deviation, the Shannon entropy, the mode(s), and the log-likelihood function.
Section 3 is devoted to the proof of our main result. In section 4, we investigate numerically the parameters
estimation in a special case where the distribution of X and that of Y are fixed. The practical usefulness of
our class is illustrated in section 5 via an application on real data.

2. Mathematical properties

Theorem 2.1. Let p € (0,1) and Z be a random variable belonging to the Parametric Mizture(p)— class.
Then the following results hold :

1) The pmf of Z is given by

P(Z=k)=pP(X =k)+ (1 —p)P(Y = —k), k€ Z. (1)
2) If X andY have the same distribution than a random variable T, then Z can be rewritten as the following
form :
Z = RT,
where R is a Rademacher random variable with parameter p independent of T .
3) The random variable —Z belongs to the Parametric Mizture(q)— class, where ¢ =1 — p.
4) The pmf of | Z| has the following representation :

P(|Z|=k)=pP(X =k)+(1—p)P(Y =k), keN.

5) Let Fy(z) = P(U < z) denote the cumulative distribution function of a random variable U and |-] denote
the floor function. Then we have

(1—p) +pFx(lz]) if x>0,
Fz(l') =
(1=p)(1 = Fy(=[z] -1)) ifz<O0.

6) Let Ry(x) =P(U > x) denote the survival function of a random variable U. Then we have

pRx([z]) if © >0,
Rz(x) =
1-(1-p)Ry(—|z]-1) ifxz<0.
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7) Let ky(x) =P(U =2 | U > x) denote the failure rate function of a random variable U. Then we have

P(X =x)

Ee(Z =1 ifxe{l,2,...},

) =0r0-pry=0)
O T o rr =g T

(1-pP(Y = —x)
1—(1—-p)Ry(=[z])

ifre{ .. —2-1}.

8) Let ty(xz) =P(U =z | U < x) denote the reverse failure rate function of a random variable U. Then we
have

pP (X =)
(1 -p) +pFx([z])

ifxe{l1,2,...},

_)pPPX=0)+(0-pPY¥ =0
Tz(z) = (I —p)+ pP(X = 0) ifx =0,

(L-pB(Y = —a)
A= p)( - Fr(—[z] - 1)

ifee{. ., —2,-1}.

9) Let Gy (s) = E(sY) denote the probability generating function of a random variable U. Then the pmf of
Z has the following representation :

G(k)
—Zlizzo) () if k>0,
k!
1 (=k)
P(Z = k) - (GZI{ZSO} (s)>
(—k‘)' ‘s—>0 ka < 07
GZI{ZZO} (0) if k=0.

10) Let My(t) = E(etV) denote the moment-generating function of U. Then we have

Mz(t) = pMx (t) + (1 — p) My (-1), teR.

11) For any non-negative integer n, we have

E(Z") =pE(X") + (=1)"(1 - p)EY™).

12) The variance of Z is given by

V(Z) = pE(X?) + (1 = p)E(Y?) - p* (E(X))” — (1 - p)* (E(Y))” + 2p(1 — p)E(X)E(Y).
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13) Let CV(Z) = 07 /E(Z), with o7 = \/V(Z), denote the coefficient of variation of Z. Then we have

PE(X) — (1 - p)E(Y)

oV(Z) =

14) Let Skewness(Z) = E(((Z —E(Z))/oz)?) denote the skewness of Z. Then we have

Skewness(Z) = E(Z°) - 3E (222725 (Z)+2(E (Z))S-

15) Let Kurtosis(Z) = E(((Z —E(Z))/oz)*) denote the kurtosis of Z. Then we have

Kurtosis(Z) = E (Z4> —4E (23) E(Z) + GIE (ZQ) (E (Z))2 -3(E (Z))4 _3
0z

16) Let ID(Z) =V (Z)/E(Z) denote the index of dispersion of Z. Then we have

ID(Z) =
PE(X?) + (1 - p)E(Y?) — p? (E(X))* — (1 — p)? (E(Y))* + 2p(1 — p)E(X)E(Y)
PE(X) — (1 = p)E(Y) '

17) Let MAD(Z) =E (|Z —m|) denote the mean absolute deviation of Z. Then we have

MAD(Z) = 2mFz(|m)) —m —E(Z) + 2 i kP (Z =

k=|m|+1
with
m]
p|EX)=) kP(X =k) if lm] > -1,
o] k=1
> kP(Z=
k=|m]+1 —|m]|—1
PE(X)—(1=p) > kP(Y =k) if|m]<-1.
k=1

18) Let Py denote the probability mass function of a random variable U and H(U) denote the Shannon
entropy of U. Then we have

H(Z)

(1 =p)Py(0) (—log (Pz(0)) +log (1 — p) + log (Py(0)))
+ pPx(0) (—log (Pz(0)) + log (p) + log (Px(0)))
+ pH(X)+ (1 —p)H(Y) —plog(p) — (1 —p)log (1 —p).

19) Set Ex = {mode(s) of X} and Fy = {—ky; ky is a mode of Y}. Then the mode(s) of Z is a subset
of Ex U{0} U Fy.
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20) Let ly (k1,ka,... kn) = log (er{k17k27~~vkn} PU = k)) denote the log-likelihood function associated
to a random wvariable U. For any B = {b1,...,by}, £(B) = v denotes its cardinal and |B| =

{Ib1l, -, |bw|}, where |b;| equals to the absolute value of b;. We set Iy = {ki; 1 < i < n,k; = 0},
Iy ={ki; 1<i<nk;>0} and I_ ={k;; 1 <i<n,k; <0}. Then, for all (k1,ka,... kn) € Z™, we
have

Iz (kv ko, ... k)
= t(lo)log(P(Z =0))+log(p)lx (I+) +log (1 —p)ly (|I-]).

Remark 2.2. Owing to 2), note that the Parametric Mixture(p)— class can be considered as a generalization
of the Rademacher(p)— class originally introduced by Chesneau and Kachour (2012). In particular, if T is
a Poisson random variable with parameter X > 0, then Z follows the Extended Poisson (E-Po) distribution
studied by Bakouch et al. (2016).

Remark 2.3. It follows from 4) that |Z| has a 2—mizture discrete distribution.

Remark 2.4. Using 16), if p = 1 (resp. p = 0), then Z has the same index of dispersion of X (resp.
Y ). Moreover, ID(Z) > 0 (resp. ID(Z) < 0) if and only if E(X) > (1 — p)/pE(Y) (resp. E(X) <
(1—=p)/PE(Y)).

Remark 2.5. Let oy (t) = E(e®®V) denote the characteristic function of a random variable U. Proceeding

as in 10), we show that ¢z (t) = E (e"%) = ppx (t) + (1 — p)py (—t), t € R.

3. Proofs of Theorem 2.1

1) For any k € Z, since A is independent of X and Y, we have

P(Z = k) PH{Z =k} NA)+P{Z=k}NA)
= PH{X =k}NA)+P{-Y =k}nA)

pP(X =k)+ (1 —p)PY = —k).

2) If X and Y have the same distribution than a random variable T', then we have the equality in distribution
: Z = IxX — I7Y = RT, where R = I4 — Iy € {—1,1} is a Rademacher random variable with
parameter p independent of T'.

3) For any k € Z, we have

P(Z=—k) = pP(X = —k)+ (1 - p)P(Y = —(~F))
= ¢PY=k)+ (1 —-qP(X =—k).
Hence —Z belongs to the Parametric Mixture(q)— class.
4) For any k € N, we have
P(|Z|=k) = P({|Z| =k}NA)+P({|Z|=k}NA)

P{X =k}NA)+PH{Y =k} N A)
pP(X = k) + (1 —p)P(Y =k).
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5) For z < 0, we have

2] £
Fz(z) = > P(Z=k= Y P{-Y=kInA

k=—o00 k=—o0
)

= (1-p) ) PBY=k=01-pPBY >—|z])

k=—|z]
= (1-p)(A-Fy(=|z]-1)).

Suppose now that 0 < z < 1, then

Fz(il') = Fz(—l)"f‘P(Z:O)
= (1-pA-PY =0))+pP(X =0)+ (1 —-p)PY =0)
= (1-p+pP(X=0) (=0 -p) +pFx(z])

Finally, for x > 1, we have

L] [z]
Fz(z) = > P(Z=k)=Fz0)+> P(Z=k)
k=1

k=—o00
L] [z]
= Fz(0)+> PUX =k}nA)=Fz(0)+p> P(X =k)
k=1 k=1
£l
= (1-p)+pP(X =0)+pY P(X =k)=(1—-p)+pFx(|z]).
k=1

Hence

(1 —p)+pFx(|lz]) if x>0,
Fz(i) =
(I1-p)(1=Fy(—|z]-1)) ifz<O.

6) 7) 8) These points are immediate consequences of the equalities :

Ry(w) =P(Z > 2) = 1= Fz(a), kz@) =P(Z=w|Z>2)= iiif:f%
and P(Z
roa) = B(Z =2 |2 <) = L)

and the points 1) and 5).

9) We have

E(SZI{zzo}) — ]E(SZI{zzo}]A) + E(SZI(zzo}]Z)
= E(sMxo],) + E(s~V-vzo )
= pGx(s)+ (1 —p)E(s " 1r=0) = pGx (s) + (1 — p)P(Y = 0)

GZI{zzo} (s)
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and
1 1 ZIiz<0}
) =F -
GZI{Z<O} (S) < s )
ZI{z<o ZIiz<0}
_ s ((1) IA) i ((1) )
S S
1 X1ix<oy —YIi_y<oy
1 XI{X:()}
= pE ((5> >+(1—p)Gy(S) =pP(X =0)+ (1-p)Gy(s)
Therefore
a¥ .
PP(X = k) k>0, | PO itk >0,
P(Z=Fk = { (1-pPY =—k) ifk<0 Gk .
(1-p) (_Yk)' (0) ifk<0
P(Z =0) if k=0
P(Z = 0) if k=0,
4
k{jz"} (0) if k>0
(—k)
1
o)
(—k)' ‘s—>0 if k< 0,
G 21, y50, (0) if k = 0.
10) For any t € R, we have
Mz(t) = E(e'?) =E(e'?14) + E(e'? ) = E(e"*14) + E(e " I3)

= pMx(t) + (1 - p)My (~1).
11) It follows from 10) that
M (t) = pME () + (—1)"(1 = p) My ().
So
E(Z") = M{(0) = pE(X") + (-=1)"(1 = p)E (Y").

12) Owing to 11), we have E(Z) = pE(X) — (1 — p)E(Y) and
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E(Z?) = pE(X?) + (1 — p)E(Y?). Therefore
V(Z) = E(Z%) - (E(Z))?
= pE(X?)+ (1-pE(Y?) - p* (E(X))” - (1 - p)* (E(Y))*
£ 21— PE(XE(Y).

13) 14) 15) 16) These points are immediate consequences of the definitions and the point 12).

17) We have

MAD(Z)

with, by 1),

S e

k=|m]+1

18) Using 1), we have

H(Z)

+ +

19) Let kx >0 (resp.
o If £ >0 and

= E(Z-m| = Z |k —m|P(Z =k)
k=—oc0
Lm] o
= > m-kPZ=k+ > (k-mP(Z=k)
k=—00 k=|m|+1
= 2mFy(|m|) - > kP(Z=
k=|m]+1
[m]
p(E(X)ZkIP’( k)) if [m] > —1,
k=1
Z=k) =
—|m]|-1
PE(X)—(1-p) > kP(Y =k) if [m|<-1
k=1
E(—log(Pz)) =~ Y Pz(k)log(Pz(k))
k=—o00
—Pz(0)log (Pz(0)) — i Pz(k)log (Pz(k ZPZ )log (Pz(k))
k=—oc0
—Pz(0)log (Pz(0 ZPY )log ((1 — p) Py (k))

pZPX

(1 —p)Py(0) (—log (Pz(0)) +log (1 — p) + log (Py(0)))
pPx (0) (=log (Pz(0)) + log (p) + log (Px(0)))
pH(X)+ (1 -p)H(Y) —plog (p) — (1 —p)log (1 —p).

)log (pPx (k))

ky > 0) be a mode of X (resp. Y).
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— if kx > 0, then we have
P(Z = k) = pP(X = ) < pP(X = kx) = P(Z = kx).
— if kx = 0, then we have

P(Z=k) = pP(X=Fk)
< pP(X =0)=P(Z=0)— (1-p)P(Y =0)
< P(Z=0)
o If k < 0 and

— if ky > 0, then we have

PZ=k)=1-pPY =-k) < (1—-p)PY =ky)=P(Z = —ky).
— if ky = 0, then we have

P(Z=k) = (1-pPY =-k)
(1=pP(Y =0) =P(Z =0) —pP(X =0)

<
< P(Z=0).

Therefore, if we set £x = {modes of X} and Fy = {—ky such that ky is a mode of Y}, one can
deduce that the mode(s) iof Z s a subset of Ex U {0} U Fy.

20) Using 1), we obtain

Iy (ki kay ... kn) = log 11 P(Z = k)
ke{ki,ka,....kn}

= > log(P(Z=k)

ke{ki,ka,....kn}

= Y log(P(Z=0)+ Y log(pP (X = k))

kely kel
+ Y log(1=p)P(Y = —k))
kel_
= #(lo)log(P(Z =0)) +log(p) Y log (P(X = k))
kel
+ log(l—p Z log (P(Y = |k|))
kel_

= f#(lo)log (P(Z = 0)) +log (p)Ix (I+) +log (1 —p)ly (|I-]).

4. Numerical study

In this section, we consider that X is a Poisson random variable with A > 0 as parameter and Y is a
Geometric random variable with 0 < a < 1 as parameter. Let now Z be a random variable which belongs
to the Parametric Mixture(p)— class, with X and Y as considered below, and p € (0,1). In other words,
based on (1), the pmf of Z is defined by

)\k
pe*)‘ﬁ, ifk > 0,
P(Z=k) = pe*+(1—pla, ifk=0, (2)
(1-pla(l—a)~F, ifk <O0.

Next, we denote the above distribution PG-M (A, a, p).
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Remark 4.1. In Figure 1, we have plotted the distribution for Z, defined by (2), for a combination of
parameters. It is interesting the wide range of shapes of the distributions derived.

Therefore, using some properties introduced in Section 77, one can see that

- E(Z):;D)\—(l—p)l;a,

- V(Z) =
A2p(1 = p) + Ap (1 n 2(1 —pC)L(l — a)) n (I-p)(1—a)2 —a(; —(1-p)(1 - a))7
= Mz(t) = pe 0 + (=)

The set of the mode(s) of Z is a subset of {0, |A]} if A is not an integer, or a subset of {0, A\ — 1, A} if
A is an integer,

— The log-likelihood function is given by

Iz (ki,ko,. .. k) = t(Io)log (pe >+ (1 —p)a)
+ log(p) [ =M Ie)+ | D ki | log(A) —log [ []*
I It
+ log(1—p) | £(T)log(a)+ [ D Ikl | log (1 —a)

I_

(3)

Remark 4.2. Let K = (K4,...,K,) be a n-sample of Z and 0 = (\,a,p) be the vector of parameters
associated to the distribution (2). We suppose that 6 € ©, where © is a compact subset of (0,00) X
[0,1] x [0,1]. Therefore, the Mazimum Likelihood Estimator of 0, denoted by 0, = (Xn,dn,f)n), is
defined by R

0, = argmaxgyce lz (Ki,...,Ky),
where lz is the log-likelihood functioAn defined by (3). Here, we omit the standard theoretical details

concerning asymptotic properties of 6,,. For example, standard errors can be derived from the Hessian
as usual (see, e.g. Lehmann and Casella (1998)).

We now present a simulation study to present the assessment of the performance of the estimators for this
special case. We have used simple code in R which worked without problems. For this study, we make the
following steps :

1. we generate ten thousand samples of size n from the distribution of Z, defined by (2),
2. we compute, based on (3), the Maximum Likelihood estimators for the ten thousand samples, say
(Xm, an,i,pm) for i = 1,...,10000,

3. we compute the biases and mean squared errors given by :

> ()\m - o

10000 )

Biasy (n) = == 10000 ’
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10000
(Gn,i — ao)
. i=1
BlaSQ (n) = W,
10000
; (Pn,i — Po)
Biasz (n) = —————— 10000 ,
10000 , . 2
Z (An,z A())
i=1
MSE; (n) = 10000 ’
10000
Z (an,z - aO)
i=1
MSE (n) = 10000 ’
10000 )
> (Pn.i — Po)

MSE; (n) = == 10000 ’

4. we repeated these steps for n = 50, 100, 200, 500, 1000, 2000, 10000 with A\g = 1, ag = 0.3 and pg = 0.4.

Figure 2 shows how biases and mean squared errors vary with respect to n (broken line in figures corresponds
to a zero horizontal line) Thus, one can remark that the biases and the mean squared errors for each estimator
decrease to zero as n — co. On the other hand, fitting to a Gaussian distribution is illustrated in Figure 3,
for the ML estimators.

5. Real data application

The candidates who have passed the entrance test to IDRAC Business School (Lyon, France) are required
to answer a questionnaire concerning their expectations in several areas, in particular, the academic one.
Thus, the participants note (based on a seven-point Likert-scale) how the IDRAC teaching reputation
influenced their choice of the school (note that, for scale used, 1 represents a very low influence and 7
is considered as very high influence). The results of this questionnaire were collected during July 2015
(240 of new students participated to the survey). At the end of the first year in the school, the same
students are subjected to another questionnaire. This time, they have to indicate the level to which this
expectation where met after after attending the School. Once again a seven-point Likert-scale is used where
1 is equivalent to ”expectation not met”, and 7 is equivalent to ”expectation fully met”. The results of
this second questionnaire were collected during June 2016. For our real data application, we will take the
difference between post perception of the teaching reputation (measured one year after the entrance test) and
the prior expectation (measured at the entrance test). Note that, by definition, values of this new variable
vary from —6 to 6. Indeed, a positive value can be interpreted as a increasing perception, a negative value
indicate a degression, and a null value represents a stability. Data are depicted in Figure 4. The results of
the runs test show that the data set is a random sample (p-value = 0.5534). Moreover, based on empirical
ACF and PACF (see Figure 5), one can see that there is no cut-off at any lag. Therefore, observations can
be considered as no correlated. Now, in order to fit the data, we propose PG-M (), a, p) distribution, defined
by (2). First, we estimated the distribution parameters (MLE) by using (3). It follows that A, = 1.1232694,
an, = 0.7192641, and p,, = 0.6454687. The Pearson Chi-square test is performed to test the fitting. The null
hypothesis is that the sample comes from PG-M distribution and the alternative hypothesis is that sample
does not come from this distribution. The results of Pearson Chi-square test are given in the following table.

Pearson chi-square test for PG-M distribution.
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Modalities  Observed  Expected (O-E)?/E

< -2 10 8.090517 0.4506663
-1 20 17.181147 0.4624796
0 115 111.580226 0.1048112

1 60 56.590125 0.2054642

2 24 30.782978 1.4946179
>3 11 15.775006 1.4453676
Total 240 240 4.163407

(0O — E)?/E = 4.163407 < X3 .95 = 5.9915 indicating that the PG-M distribution fits the data well. We
seek to compare the quality adjustment for the observed data of Skellam (S) distribution Skellam (1946),
Extended Poisson (E-Po) Bakouch et al. (2016), Extended Binomial (EB) distribution Alzaid and Omair
(2012), discrete analogue of the Laplace (DAL) distribution Inusah and Kozubowski (2006), and our PG-M
distribution. In fact, using the data, we estimate parameter values associated to each distribution, we
simulated 1000 series of length 240 from each distribution and we kept the expected relative frequencies
for each series. The reported frequencies are the mean over the 1000 series. Results are represented in the
following table.

Relative frequency of students number and fitted distributions.

Modalities _ Observed frequency S frequency  E-Po frequency BB frequency DAL frequency _ PG-M frequency

< -2 4.166667 2.916667 1.25 2.3333 1.6666 3.750
—1 8.333333 14.583333 12.08333 7.251 6.2554 10.91667
0 47.916667 45.000 45.416667 42.456 44.4522 48.33333
1 25.000 23.333333 26.250 30.1 31.133 20.750
2 10.000 12.083333 11.666 15.13 14.234 11.250
>3 4.583333 2.083333 2.7297 16.19 2.2588 5.000
Total 100 100 100 100 100 100

One can see that the PG-M distribution is the more appropriate to fit the data, compared to the other
distributions.
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Figure 1: Plot of the marginal distribution, defined by (2), for several parameter combinations.
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Figure 2: From top to bottom and from left to right : Bias and Mean squared errors of MLE, versus n =

50, 100, 200, 500, 1000, 2000, 10000. (a) Bias of A, (b) Bias of an (c) Bias of pn (d) MSE of A (e) MSE of a, (f) MSE of
D
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Figure 3: Normal Q-Q plots for the errors (ML estimators), when Z is a mixture of Poisson distribution and Geometric
distribution and n = 1000. (a) Normal Q-Q plots of (A, — A) (b) Normal Q-Q plots of (an — a) (c) Normal Q-Q plots of
(B — p)-



Chesneau and Kachour / ProbStat Forum, Volume 10, January 2017, Pages 01-15

| ,n_'i“11MHn‘ﬁﬂi‘lll\j)\.ﬂ.lﬁ ik

T T T T T
50 100 150 200

o

Students

Effective

100

80

60

40

20

Observations

15

Figure 4: Plot of the real data : the difference between post perception of the teaching reputation (measured during July 2016)

and the prior expectation (measured during June 2015).
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Figure 5: ACF and PACF of the data.



