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Abstract. In this paper, we study the asymptotic behavior of a general sequence of upper record values,
as well as lower record values, which is connected asymptotically with some regularly varying functions.
Moreover, the limit distribution function of upper record values, as well as lower record values, with
random indices, is studied under general conditions.

1. Introduction

Record values are natural phenomena that appear in many real life applications. We can record values
in many forms in our life such as the hottest day ever, the lowest stock market, the highest rate of floating a
river and highest score of players in many sports. Actually, no one can’t be interested in record values. Let
{Xn, n ≥ 1} be a sequence of mutually independent random variables (rv’s) with common distribution
function (df) F (x). Then an upper record value Xj of {Xn, n ≥ 1} is recognized if Xj:j > Xj−1:j−1, j > 1.
An analogous definition deals with lower record values. By definition X1 is an upper as well as lower record
value. Thus, the upper and the lower record values in the sequence {Xn, n ≥ 1} are the successive maxima
and the successive minima, respectively. On the other hand, the upper and the lower record time sequences
{Nn, n ≥ 1} and {Mn, n ≥ 1} are defined by Nn = min{j : j > Nn−1, Xj > XNn−1 , n > 1}, N1 = 1
and Mn = min{j : j > Mn−1, Xj < XMn−1 , n > 1}, M1 = 1, respectively. Therefore, the upper and the
lower record value sequences {Rn} and {Ln} are defined by Rn = XNn and Ln = XMn

, respectively.
Moreover, the df’s of Rn and Ln can be expressed in terms of the functions h(x) = − log(F̄ (x)) and
h̃(x) = − log(F (x)), where F̄ (x) = 1−F (x), as P (Rn ≤ x) = Γn(h(x)) and P (Ln ≤ x) = Γn(h̃(x)), n > 1,
respectively (see Ahsanullah, 1995 and Arnold et al., 1998), where Γn(x) = 1

(n−1)!
∫ x
0
tn−1e−tdt is the

incomplete gamma ratio function. The well-known asymptotic relation Γn(
√
nx + n)

w−→n N (x), where

N (x) is the standard normal distribution and “
w−→n ”means weak convergence as n→∞, enables us to

deduce the following basic result.
Lemma 1.1 (c.f. Tata, 1969, see also Corollary 6.4.1 in Galambos, 1987). Let an, ãn > 0 and
bn, b̃n ∈ <, are normalizing constants such that

ΦRn(anx + bn) = P (Rn ≤ anx + bn)
w−→n ΦR (x) (1.1)
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and
ΦLn(ãnx + b̃n) = P (Ln ≤ ãnx + b̃n)

w−→n ΦL (x), (1.2)

where ΦR(x) and ΦL(x) are non-degenerate df’s if and only if hn(anx + bn) = h(anx+bn)−n√
n

→ V (x) and

h̃n(ãnx+ b̃n) = h̃(ãnx+b̃n)−n√
n

→ V (−x), as n→∞, respectively, where V (x) is finite on an interval and has

at least two growth points. In this case we have ΦR (x) = N (V (x)) and ΦL (x) = 1−N (V (−x)).
Resnick (1973) showed that the function V (.) can only take three possible types (denoted by Vj(x; γ), j =

1, 2, 3, γ > 0), or equivalently there are only three kinds of distributions that could arise as limiting distri-
butions of suitably normalized upper (lower) record values. Namely, the only possible limiting distributions
of suitably normalized upper record value are N (Vj(x; γ)), j = 1, 2, 3, where

V1(x; γ) =

{
−∞, x < 0,
γ log x, x ≥ 0;

V2(x; γ) =

{
−γ log | x |, x < 0,
∞, x ≥ 0;

V3(x; γ) = V3(x) = x, ∀ x.

Barakat et al. (2012) studied the limit df of the random record model. This study gives the corresponding
results for upper and lower record values, with random sample size under general conditions. The following
two theorems summarize the results of Barakat et al. (2012).
Theorem 1.1. Let νn be a nonnegative integer-valued rv. Furthermore, let an > 0 and bn ∈ < be suitable
normalizing constants such that

ΦRνn (anx+ bn) = P (Rνn ≤ anx+ bn)
w−→n ΨR(x), (1.3)

where ΨR(x) is a non-degenerate df. Furthermore, let Kr be the class of all non-degenerate limit df ’s defined
by (1.3). Then, for any non-degenerate df ΨR(x),ΨR(x) ∈ Kr if and only if{

(i) ΦRn(anx+ bn) = P (Rn ≤ anx+ bn)
w−→n ΦR(x) = N (Vj(x; γ)),

(ii) P (νn−n√
n
≤ z) w−→n A(z) = P (τ ≤ z).

The limit df ΨR(x) has the form ΨR(x) =
∫∞
−∞N (Vj(x; γ)− z)dA(z), j ∈ {1, 2, 3}.

Theorem 1.2. Let νn be a nonnegative integer-valued rv. Furthermore, let ãn > 0 and b̃n ∈ <, be suitable
normalizing constants such that

ΦLνn (ãnx+ b̃n) = P (Lνn ≤ ãnx+ b̃n)
w−→n ΨL(x), (1.4)

where ΨL(x) is a non-degenerate df. Furthermore, let K` be the class of all non-degenerate limit df ’s defined
by (1.4). Then, for any non-degenerate df ΨL(x),ΨL(x) ∈ K` if and only if{

(i) ΦLn(ãnx+ b̃n) = P (Ln ≤ ãnx+ b̃n)
w−→n ΦL(x) = 1−N (Vj(−x; γ)),

(ii) P (νn−n√
n
≤ z) w−→n A(z) = P (τ ≤ z).

The limit df ΨL(x) has the form ΨL(x) = 1−
∫∞
−∞N (Vj(−x; γ)− z)dA(z), j ∈ {1, 2, 3}.

Remark 1.1. It is natural to look for the limitations on νn, under which we get the relations ΦR(x) = ΨR(x)
and ΦL(x) = ΨL(x), ∀ x. In view of Theorems 1.1 and 1.2, the last equalities are satisfied if and only if the
df A(z) = P (τ ≤ z) is degenerate at zero, which means the asymptotically almost randomlessness of νn.

Let {Xi} and {Yi} be two sequences of rv’s defined on the same probability space (Ω, F, P ), where
{Xi} is i.i.d with common df F (x). Furthermore, let {R?n = YNn}({L?n = YMn

}) and {Rn = XNn}({Ln =
XMn}) be the upper (lower) record values corresponding the sequences {Yi} and {Xi}, respectively. When
the sample size itself is assumed to be a positive integer-valued rv νn and {R?n}({L?n}) is assumed to
be connected asymptotically with {Rn}({Ln}) and some regularly varying functions, we derive the limit
df’s of upper (lower) record values {R?νn = YNνn }({L

?
νn = YMνn

}). More specifically, we study the weak
convergence of the df of the general sequence {R?νn}({L

?
νn}), where {R?n}({L?n}) belongs to a restricted class
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L(Rn;φ|τ)(L(Ln;φ|τ)), in which the elements are connected asymptotically with the rv τ, the sequence
{Rn}({Ln}) and some regularly varying functions, where the following definition characterizes the class
L(Rn;φ|τ)(L(Ln;φ|τ)).
Definition 1.1. Let [t] denote the greatest integer less than or equal to t. Let τ, be a positive rv and φ(n)

is regularly varying function at (+∞) with index ρ > 0 (that is limn→∞
φ(nx)
φ(n) = xρ, x ∈ (0,∞), written

φ(n) ∈ RVρ, for more details on the regularly varying functions, see Haan, 1970). If for any sequence un of
real numbers, we have∣∣P (R?n ≤ un|τ = z)− P

(
R[φ(n)] ≤ un|τ = z

)∣∣ −→n 0

and ∣∣P (L?n ≤ un|τ = z)− P
(
L[φ(n)] ≤ un|τ = z

)∣∣ −→n 0,

where “ −→n ”stands for convergence, as n→∞, for all z > 0, following Xie Shengrong (1997), we call the
sequence {R∗n}({L∗n}) dependent on τ in connecting with {Rn}({Ln}) and φ(n) ∈ RVρ. Moreover, in this
case we write {R∗n} ∈ L(Rn;φ|τ)({L∗n} ∈ L(Ln;φ|τ)).

2. Main results

The following two theorems extend the results of Barakat and El-Shandidy (2004) to any upper and
lower record values. These simple theorems, besides they will be needed in obtaining the limit df’s of {R∗νn}
and {L∗νn}, where {R?n} ∈ L(Rn;φ|τ) and {L∗n} ∈ L(Ln;φ|τ), they are of independent interest.
Theorem 2.1. Let an > 0 and bn be normalizing constants for which

ΦR[φ(n)]
(anx+ bn) = P (R[φ(n)] ≤ anx+ bn)

w−→n ΦR(x), (2.1)

where φ(n) ∈ RVρ, φ
1
2 (n)(φ(nx)φ(n) − x

ρ) −→n 0, 0 < ρ < 2 and ΦR(x) is a non-degenerate df. Then, we get

ΦR(x) = N (Vj(x; γ)), j ∈ {1, 2, 3}.
Proof. We observe that (2.1) is satisfied if and only if

h[φ(n)](anx + bn) =
h(anx + bn)− [φ(n)]√

[φ(n)]
−→n V (x), (2.2)

where ΦR(x) = N (V (x)). The fact that φ(n) −→n ∞, yields [φ(n)] ∼ φ(n). Moreover, the fact that 0 ≤
F (anx + bn) ≤ 1, for all x and n, leads to

h[φ(n)](anx + bn) ∼ hφ(n)(anx + bn) −→n V (x). (2.3)

Now, for any m, `, `′ > 0 it is not difficult to verify that

h`(amx + bm) =

√
`′

`

h(amx + bm)− `′√
`′

+
`′ − `√

`
. (2.4)

By choosing ` = φ(n) and `′ = φ(mn(s)), where mn(s) = n+ [nsφ−
1
2 (n)] = n∈n(s), (2.4) can be written in

the form
hφ(n)(amn(s)x+ bmn(s)) = Anhφ(mn(s))(amn(s)x + bmn(s)) + Bn. (2.5)

where

An =

√
φ(mn(s))

φ(n)

and

Bn =
φ(mn(s))− φ(n)√

φ(n)
.
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Since mn(s) −→n ∞, the relation (2.3) yields

hφ(mn(s))(amn(s)x + bmn(s)) −→n V (x). (2.6)

We now estimate the limit of the sequences An and Bn, as n→∞. Since, φ(nx)φ(n)
−→n xρ uniformly in x and

∈n(s) −→n 1, we get φ(mn(s))
φ(n) = φ(n∈n(s))

φ(n)
−→n 1. Therefore,

An =

√
φ(mn(s))

φ(n)
−→n 1. (2.7)

On the other hand, in view of the condition φ
1
2 (n)(φ(nx)φ(n) − x

ρ) −→n 0, we get φ(mn(s)) = φ(n∈n(s)) =

φ(n)∈ρn(s) + o(φ
1
2 (n)), where ∈n(s) = mn(s)

n = 1 + sφ−
1
2 (n) + α

n , 0 < α < 1. Therefore,

φ(mn(s))− φ(n) = φ(n)∈ρn(s) + o(φ
1
2 (n))− φ(n) = φ(n)

(
sρφ−

1
2 (n) +

ρα

n
+ o(φ−

1
2 (n))

)
. (2.8)

Now, since φ(n) ∈ RVρ, we can write φ(n) = nρS(n), where S(x) is slowly varying function (see, Subsection
6.3 of Galambos, 1995). Moreover, since ρ < 2, we get√

φ(n)

n
=
√
nρ−2S(x) −→n 0. (2.9)

Combining this fact with (2.8), we get

Bn ∼
√
φ(n)

(
sρφ−

1
2 (n) +

ρα

n
+ o(φ−

1
2 (n))

)
= sρ+

ρα
√
φ(n)

n
+ o(1) −→n sρ. (2.10)

Combining now (2.10), (2.7), (2.6) with (2.5), we get

hφ(n)(amn(s)x+ bmn(s)) −→n V (x) + sρ. (2.11)

Moreover, in view of the result of Resnick (1973) and by applying Khinchine type theorem on (2.11) and
(2.3), we deduce that there exist measurable functions α(s) > 0 and β(s), such that

V (x) = V (α(s)x+ β(s))− sρ. (2.12)

By solving the functional equation (2.12) (see Resnick, 1973), as ρ > 0, the conclusion of the theorem will
be obtained.
Theorem 2.2. Let ãn > 0 and b̃n be normalizing constants for which

ΦL[φ(n)]
(ãnx+ b̃n) = P (L[φ(n)] ≤ ãnx+ b̃n)

w−→n ΦL(x),

where φ(n) ∈ RVρ, φ
1
2 (n)(φ(nx)φ(n) − x

ρ) −→n 0, 0 < ρ < 2 and ΦL(x) is a non-degenerate df. Then, ΦL(x) =

1−N (Vj(−x; γ)), j ∈ {1, 2, 3}.
Proof. The method of the proof of Theorem 2.2 is the same as that Theorem 2.1, except only the obvious
changes. Hence, for brevity the details of the proof are omitted.

Now, the main results concerning the limit df’s of the sequences {R?νn} and {L?νn} are given in the
following two theorems.
Theorem 2.3. Suppose that R?n ∈ L(Rn;φ|τ). Let an > 0 and bn ∈ <, n ≥ 1, be suitable normalizing
constants for which

P (R?n ≤ anx+ bn)
w−→n ΦR(x),

where ΦR(x) is a non-degenerate df. Furthermore, let νn be a sequence of nonnegative integer-valued rv’s,
which satisfies

νn − n
nφ−

1
2 (n)

p−→n τ, (2.13)
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where “
p−→n ”stands for convergence in probability, as n → ∞, φ(n) ∈ RVρ, 0 < ρ < 2, φ

1
2 (n)(φ(nx)φ(n) −

xρ) −→n 0 and the df A(z) = P (τ ≤ z) is symmetric and continuous at zero, i.e. A(0−) = A(0) = A(0+) = 0
(the condition A(0−) = A(0) is not considered in the original Theorem 3 of Xie Shengrong, 1997, for the
maximum order statistics, but as we shall see in the proof of Theorem 2.3, it seems to be indispensable, see
also Remark 2.2). Then,

P (R?νn ≤ a[φ(n)]x+ b[φ(n)])
w−→n

∫ ∞
−∞
N (Vj(x; γ)− ρz)dA(z), j ∈ {1, 2, 3}.

Proof. Let d > 0 be a positive real number. Clearly, for any ε ∈ (0, d), (2.13) implies

P (n+ nφ−
1
2 (n)(τ − ε) ≤ νn ≤ n+ nφ−

1
2 (n)(τ + ε)) −→n 1. (2.14)

On the other hand, we can write
P (R?νn ≤ a[φ(n)]x+ b[φ(n)]) =

P (n+ nφ−
1
2 (n)(τ − ε) ≤ νn ≤ n+ nφ−

1
2 (n)(τ + ε), R?νn ≤ a[φ(n)]x+ b[φ(n)])+

P (n+ nφ−
1
2 (n)(τ − ε) > νn or νn > n+ nφ−

1
2 (n)(τ + ε), R?νn ≤ a[φ(n)]x+ b[φ(n)])

= T (1)
n (ε) + T (2)

n (ε).

According to (2.14), T
(2)
n (ε) −→n 0, so calculating T

(1)
n (ε) is only necessary. However,

T (1)
n (ε) = P (n+ nφ−

1
2 (n)(τ − ε) ≤ νn ≤ n+ nφ−

1
2 (n)(τ + ε), R?νn ≤ a[φ(n)]x+ b[φ(n)])

=

∫ ∞
−∞

P (n+ nφ−
1
2 (n)(τ − ε) ≤ νn ≤ n+ nφ−

1
2 (n)(τ + ε), R?νn ≤ a[φ(n)]x+ b[φ(n)]|τ = z)dA(z)

≤ P (−d ≤ τ ≤ d) + 2

∫ ∞
d

P (n+ nφ−
1
2 (n)(τ − ε) ≤ νn ≤ n+ nφ−

1
2 (n)(τ + ε),

R?νn ≤ a[φ(n)]x+ b[φ(n)]|τ = z)dA(z).

By using the following well-known inequality

R?n′ ≤ R?n′′ , n′ ≤ n′′,

we get

T (1)
n (ε) ≤ P (−d ≤ τ ≤ d) + 2

∫ ∞
d

P (R?[mn(τ−ε)] ≤ a[φ(n)]x+ b[φ(n)]|τ = z)dA(z)

= P (−d ≤ τ ≤ d) + 2

∫ ∞
d

P (R?[mn(z−ε)] ≤ a[φ(n)]x+ b[φ(n)]|τ = z)dA(z),

where mn(z − ε) = n+ [n(z − ε)φ− 1
2 (n)]. Since {R?n} ∈ L(Rn;φ|τ), we get

T (1)
n (ε) ≤ P (−d ≤ τ ≤ d) + 2

∫ ∞
d

P (R[φ([mn(z−ε)])] ≤ a[φ(n)]x+ b[φ(n)]|τ = z)dA(z) + o(1). (2.15)

Now, let us introduce

τd =

{
τ, τ > d,
d, τ ≤ d.

Clearly,

P (τd ≤ z) =

{
0, z < d,
P (τ ≤ z), z ≥ d.
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Therefore, the relation (2.15) yields

T (1)
n (ε) ≤ P (−d ≤ τ ≤ d) + 2P (R[φ([mn(τd−ε)])] ≤ a[φ(n)]x+ b[φ(n)]) + o(1).

On the other hand, since τd − ε > 0, in view of the conditions φ
1
2 (n)(φ(nx)φ(n) − x

ρ) −→n 0 and ρ < 2, we get

φ(mn(τd − ε))− φ(n)

φ
1
2 (n)

−→n ρ(τd − ε).

Consequently, by using Theorem 1.1 (the upper record values case) and Theorem 2.1, after letting d −→ 0,
we get

limn→∞
P (R?νn ≤ a[φ(n)]x+ b[φ(n)]) ≤

∫ ∞
−∞
N (Vj(x; γ)− ρz)dA(z), j ∈ {1, 2, 3}. (2.16)

By applying a similar argument (with only the obvious modification) we can prove that

lim
n→∞

P (R?νn ≤ a[φ(n)]x+ b[φ(n)]) ≥
∫ ∞
−∞
N (Vj(x; γ)− ρz)dA(z), j ∈ {1, 2, 3}. (2.17)

Thus, the claimed result for upper record values case follows by combining (2.16) and (2.17). This completes
the proof of the theorem.
Theorem 2.4. Suppose that L?n ∈ L(Ln;φ|τ). Let ãn > 0 and b̃n ∈ <, n ≥ 1, be suitable normalizing
constants for which

P (L?n ≤ ãnx+ b̃n)
w−→n ΦL(x),

where ΦL(x) is a non-degenerate df. Furthermore, let νn be a sequence of nonnegative integer-valued rv’s,
which satisfies

νn − n
nφ−

1
2 (n)

p−→n τ,

where φ(n) ∈ RVρ, 0 < ρ < 2, φ
1
2 (n)(φ(nx)φ(n) − x

ρ) −→n 0 and the df A(z) = P (τ ≤ z) is symmetric and

continuous at zero. Then,

P (L?νn ≤ ã[φ(n)]x+ b̃[φ(n)])
w−→n 1−

∫ ∞
−∞
N (Vj(−x; γ)− ρz)dA(z), j ∈ {1, 2, 3}.

Proof. Without significant modifications, the method of the proof of Theorem 2.4 is the same as that
Theorem 2.3, except only the obvious changes. Hence, for brevity the details of the proof are omitted.
Remark 2.1. By taking φ(x) = x, {Xi} = {Yi}, i ≥ 1, Theorem 2.3 and Theorem 2.4 will immediately
return to Theorem 1.1 and Theorem 1.2 for upper and lower record values, respectively.
Remark 2.2. Clearly, in upper and lower record values we can replace the symmetry condition of the df of
τ by the condition A(0−) = 0.

3. Applications

Let {Yn, n ≥ 1} represent an infinite sequence of independent continuous rv’s. Suppose Yn represents
the maximum of α(n) i.i.d rv’s each having the df F. Thus Fn, the df of Yn, is given by Fn(y) = Fα(n)(y).
In the international athletic events, α(n) may represent the size of the population of athletes at the time of
the nth event. Nevzorov (1985) refers to the model of associated record statistics of Fn as the Fα-model.
This model is originally suggested by Yang (1975) by assuming that observations, while being independent,
are non-identical distributed in a special way. Clearly, if we assume that F is exponential, then in view of
Example 2.3.1 in Arnold et al. (1998), we have

ΦRn(
√
nx+ n) = P (Rn ≤

√
nx+ n)

w−→n ΦR(x) = N (x).
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Moreover, if we assume, as example, α(n) = Cn,C > 0, we get α(n) ∈ RV1 and α
1
2 (n)(α(nx)α(n) − x) −→n 0

(since, α
1
2 (n)(α(nx)α(n) − x) = 0). Therefore, in view of Theorem 2.1 (by taking φ(n) = α(n))

ΦR[α(n)]
(
√
nx+ n)

w−→n N (x). (3.1)

On the other hand, we can check that pn = α(n)
n∑
j=1

α(j)
= 2

n+1
−→n 0 and

n∑
j=1

p2j = ◦((
n∑
j=1

pj)
1
2 ) (since,

n∑
j=1

1
(j+1)2

−→n π2

6 − 1 and
n∑
j=1

1
j+1

−→n ∞). Therefore, in view of Nevzorov (1985) (see, also Arnold et

al., 1998, Sec. 6.3.2), we get
ΦR?n(

√
nx+ n)

w−→n N (x). (3.2)

Now, if we assume that the rv’s X1, X2, ... are independent of τ, the relations (3.1) and (3.2) show that
R?n ∈ L(Rn;α|τ). Thus, Theorem 2.3 can be applied on R?n to get the following interesting relation:

P (R?νn ≤
√
nx+ n)

w−→n

∫ ∞
−∞
N (x− z)dA(z) = N (x) ? A(x).

This relation reveals an interesting property of the random Fα-model. Namely, R?νn ∼ R
?
n + νn, as n→∞,

in the sense that the df’s of R?νn and R?n + νn converge weakly to the same df N (x) ? A(x). Finally, it is
worth mentioning that this result may be obtained for many other choices of α(n), e.g., α(n) = Cnβ , C >
0, 0 < β < 2. Moreover, we can choose any arbitrary df F, rather than the exponential, whenever (1.1) holds
with N (x). Actually, the asymptotic normality of Rn holds in a broad spectrum of random phenomena. For
example, F is a standard normal, or a Weibull, or a logistic, or an Extreme value, distribution.

4. Concluding remarks

The result of this paper (namely, Theorems 2.3 and 2.4) enables us to extend the results concerning the
asymptotic behavior of the random record model, which is discussed by Barakat (2012), to some important
record models, in which the observation process fails to consist of i.i.d rv’s. Clearly, these generalized record
models are more capable to explain a higher incidence of new records than the random record model, which
was discussed by Barakat (2012). Example of such generalized model is Fα-model, suggested by Yang
(1975), in which we assume that we are observing the maxima of a geometrically increasing population. As
an application of Theorems 2.1 and 2.3, we obtained the asymptotic behavior of the random Fα−model,
where we assume that we are observing the maxima of a randomly geometrically increasing population.
Acknowledgements. The authors are grateful to Professor Satheesh Sreedharan and the referee for sug-
gestions and comments that improved the presentation substantially.
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