
ProbStat Forum, Volume 10, January 2017, Pages 27–33
ISSN 0974-3235

ProbStat Forum is an e-journal.
For details please visit www.probstat.org.in

An explicit expression for moments of order statistics for four
parameter generalized gamma distribution
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Abstract. Nadarajah and Pal (2008) found the explicit closed form expressions for the moments of
order statistics from the two parameter gamma and three parameter generalized gamma distributions.
Those expressions are shown to be very useful in terms of computing the moments of order statistics. This
paper extends the same idea to obtain the explicit expressions for the exact moments of order statistics
with the appropriate consideration for change of origin and scale. The said distribution represents a class
of probability distributions (more than 50) as limiting forms.

1. Introduction

Let X1, X2, ...Xn be a random sample of size n from a population having probability density function
(pdf) f(x) and distribution function (DF) F(x), while X1:n, X2:n, ..., Xn:n denote the corresponding order
statistics. The pdf of Xr:n, the rth order statistics is given by Arnold et al. (2008)

fr:n(x) =
n!

(r − 1)!(n− r)!
{F (x)}r−1{1− F (x)}n−rf(x). (1)

A random variable X having a four parameter generalized Gamma distribution (Amoroso distribution)
if its pdf is given by

f(x) =
1

Γ(α)

∣∣∣∣βθ
∣∣∣∣ (x− aθ

)αβ−1
exp

{
−
(
x− a
θ

)β}
(2)

for x, a, θ, α, β in R, α > 0; support x ≥ a if θ > 0, x ≤ a if θ < 0. The corresponding DF of X is given by

F (x) = 1−
γ

(
α,

(
x− a
θ

)β)
Γ (α)

for θ > 0, β ≥ 0

=

γ

(
α,

(
x− a
θ

)β)
Γ (α)

for θ < 0, β ≥ 0

(3)
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where γ(., .) denotes the incomplete gamma function defined by

γ (α, y) =

∫ y

0

tα−1exp(−t)dt.

The said distribution (Crooks, 2010) is a continuous, univariate, unimodal probability density which
represents a class of probability distributions (more than 50) as limiting forms. As a result, this single
distribution summarizes and regularizes a wide number of interesting and common probability distributions.

An extensive numbers of articles on moments of order statistics are available in the literature. Tarter
(1966) derived the exact expression for product moments of order statistics from truncated logistic distribu-
tion using Euler transformation. Saleh et al. (1975) derived exact expression for the first and second order
moments of order statistics from the truncated exponential distribution. Margolin and Winkour (1967)
obtained the exact expressions of first two moments of order statistics from the geometric distribution.
Nadarajah and Pal (2008) established the explicit closed form expressions for the moments of order statis-
tics from the two parameter gamma and three parameter generalized gamma distributions. They used these
expressions in two quality control datasets and illustrate that the computational time is consistently smaller
as compared to the integration formula for moments of order statistics. This paper extends the same idea to
obtain explicit expressions for the exact moments of order statistics from four parameter generalized gamma
distribution with the appropriate consideration for change of origin and scale; that are finite sums of special
type of functions known as Lauricella function of type A and B defined by Lauricella (1893)

F
(n)
A (a, b1, ...., bn; c1, ..., cn;x1, ..., xn)

=

∞∑
m1=0

...

∞∑
mn=0

(a)m1+...+mn
(b1)m1

... (bn)mn x
m1
1 ...xmnn

(c1)m1
...(cn)mnm1!...mn!

,
(4)

F
(n)
B (a1, . . . , an, b1, . . . , bn; c;x1, . . . , xn)

=

∞∑
m1=0

...

∞∑
mn=0

(a1)m1
. . . (an)mn (b1)m1

... (bn)mn x
m1
1 ...xmnn

(c)m1+···+mn m1!...mn!
,

(5)

respectively, where (f)k = f(f + 1)...(f + k − 1) denotes the ascending factorial where k = 1, 2,....

Rest of the paper is organized as follows. Section 2 provides the preliminaries. The explicit expressions

for E

(
Xr:n − a

θ

)k
when X1, X2, ..., Xn is a random sample from (2) are derived in Section 3. The extension

of this result to non-identically distributed random variables is considered in Section 4. Finally, we conclude
the paper in Section 5.

2. Preliminaries

The following results will be used in the remainder of the article implicitly.

(i) γ (α, x) = xα
∞∑
m=0

(−x)m

(α+m)m!
, for all positive α, x (6)

(ii) (f)s =
Γ (f + s)

Γ (f)
, for s > 0 (7)

(iii) 1− γ (α, x)

Γ (α)
= xα−1 exp (−x)

∞∑
m=0

x−m

Γ (α−m)
(8)
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3. I.I.D case

In this section we shall obtain the explicit expression of the kth moment of Xr:n (with consideration of
change of origin and scale) when X1, X2, ..., Xn is a random sample from the p.d.f given by equation (2).

Theorem 3.1. For the four parameter generalized gamma distribution as given in (2) for θ > 0 and β > 0,

E

(
Xr:n − a

θ

)k
=

n!

(r − 1)!(n− r)!

r−1∑
l=0

(−1)
l

(
r − 1

l

)
(Γ (α))

r−1−l−n
Γ

(
k

β
+ α(n− r + l + 1)

)
αr−n−l

× F (n−r+l)
A

(
k

β
+ α(n− r + l + 1), α, . . . , α;α+ 1, . . . , α+ 1;−1, . . . ,−1

)
Proof. The kth moment of Xr:n with the change of origin and scale can be expressed as

E

(
Xr:n − a

θ

)k
=

n!

(r − 1)!(n− r)!
β

r−1∑
l=0

(−1)l
(
r − 1

l

)
(Γ(α))

r−1−l−n
I (l) (9)

where

I (l) =

∫ ∞
0

zαβ+k−1
(
γ
(
α, zβ

))n−r+l
exp (−zβ)dz. (10)

Using the series expansion of equation (6), the integral in equation (10) can be expressed as

I (l) =

∫ ∞
0

zαβ+k−1

(
zαβ

∞∑
m=0

(−zβ)m

(α+m)m!

)n−r+l
exp (−zβ)dz

=

∫ ∞
0

∞∑
m1=0

...

∞∑
mn−r+l=0

(−1)m1+...+mn−r+l exp
(
−zβ

)

×
(
zβ
) k−1

β +α(n−r+l+1)+m1+···+mn−r+l

(α+m1) ... (α+mn−r+l)m1! . . .mn−r+l!
dz

=
1

β

∞∑
m1=0

...

∞∑
mn−r+l=0

(−1)m1+...+mn−r+l

×
Γ

(
k

β
+ α (n− r + l + 1) +m1 + ...+mn−r+l

)
(α+m1) . . . (α+mn−r+l)m1! . . .mn−r+l!

. (11)

After further simplification and using equation (7) in equation (11), we have

I (l) =
1

β
αr−n−lΓ

(
k

β
+ α (n− r + l + 1)

)
×

∞∑
m1=0

...

∞∑
mn−r+l=0

(−1)
m1 . . . (−1)

mn−r+l (α)m1
. . . (α)mn−r+l

×

(
k

β
+ α (n− r + l + 1)

)
m1+···+mn−r+l

(α+ 1)m1
. . . (α+ 1)mn−r+l

m1! . . .mn−r+l!
. (12)
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Following the definition in equation (4), the equation (12) can be written as follows:

I (l) =
1

β
αr−n−lΓ

(
k

β
+ α (n− r + l + 1)

)
× F (n−r+l)

A

(
k

β
+ α (n− r + l + 1) , α, . . . , α;α+ 1, . . . , α+ 1;−1, . . . ,−1

)
. (13)

Combining equation (9) and equation (13) we get the desired expression.

Theorem 3.2. For the four parameter generalized gamma distribution as given in eq. (2) for θ < 0 and
β > 0,

E

(
Xr:n − a

θ

)k
=

n!

(r − 1)!(n− r)!

n−r∑
l=0

(−1)
l

(
n− r
l

)
(Γ (α))

−r−l
Γ

(
k

β
+ α(l + r)

)
α1−l−r

× F (l+r−1)
A

(
k

β
+ α(l + r), α, ..., α;α+ 1, ..., α+ 1;−1, ...,−1

)
Proof.

E

(
Xr:n − a

θ

)k
=

n!

(r − 1)!(n− r)! (Γ (α))
n

∣∣∣∣βθ
∣∣∣∣ ∫ a

−∞

(
x− a
θ

)αβ+k−1{
γ

(
α,

(
x− a
θ

)β)}r−1

×

{
Γ (α)− γ

(
α,

(
x− a
θ

)β)}n−r
exp

{
−
(
x− a
θ

)β}
dx

=
n!

(r − 1)!(n− r)! (Γ (α))
n β

n−r∑
l=0

(−1)
l

(
n− r
l

)
× (Γ (α))

n−r−l
∫ ∞
0

zαβ+k−1
(
γ
(
α, zβ

))l+r−1
e−z

β

dz

=
n!

(r − 1)!(n− r)!
β

n−r∑
l=0

(−1)
l

(
n− r
l

)
(Γ (α))

−r−l
I (l) , (14)

where

I (l) =

∫ ∞
0

zαβ+k−1
(
γ
(
α, zβ

))l+r−1
exp (−zβ)dz.

Proceeding in a similar manner as Theorem 3.1, from equation (14), we get the final expression.

4. N.I.D case

Let X1, X2, ...Xn be independent gamma random variables with the pdfs given by

fi(x) =
1

Γ(αi)

∣∣∣∣βθ
∣∣∣∣ (x− aθ

)αiβ−1
exp

{
−
(
x− a
θ

)β}
(15)

for x, a, θ, αi, β in R, αi > 0; support x ≥ a if θ > 0, x ≤ a if θ < 0; i = 1, 2,...,n, while X1:n < X2:n... < Xn:n

denote the corresponding order statistics. To obtain E

(
Xr:n − a

θ

)k
, we use the following result of Barakat

and Abdelkader (2004):

E (Xr:n)
k

=

n∑
j=n−r+1

(−1)
j−n+r−1

(
j − 1

n− r

)
Ij (k) (16)
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where for x ≥ a,

Ij (k) = k
∑
· · ·
∑

1≤i1<i2<···<ij≤n

∫ ∞
a

xk−1
j∏
t=1

(1− Fit (x)) dx,

Fit (.) is the DF of Xit given by Fit (x) =
γ (αit , x)

Γ (αit)
. The results are derived in the following theorems.

Theorem 4.1. For the four parameter generalized gamma distribution as given in equation (15) for θ > 0
and β > 0,

E

(
Xr:n − a

θ

)k
=
θ

β
k

n∑
j=n−r+1

(−1)
j−n+r−1

(
j − 1

n− r

) ∑
· · ·
∑

1≤i1<i2<···<ij≤n

Γ (δ)

jδΓ (αi1 + 1) . . .Γ
(
αij + 1

)
× F (j)

A

(
δ, 1, . . . , 1;αi1 + 1, . . . , αij + 1;

1

j
, . . . ,

1

j

)

where δ =
k

β
+ αi1 + · · ·+ αij .

Proof. Using equation (16), the kth moment of Xr:n with the change of origin and scale can be expressed as

E

(
Xr:n − a

θ

)k
=

n∑
j=n−r+1

(−1)
j−n+r−1

(
j − 1

n− r

)
Ij (k) (17)

where

Ij (k) = k
∑
· · ·
∑

1≤i1<i2<···<ij≤n

∫ ∞
a

(
x− a
θ

)k−1 j∏
t=1

{1− Fit (x)} dx. (18)

Using equation (3) in equation (18), we obtain

Ij (k) =
∑
· · ·
∑

1≤i1<i2<···<ij≤n

∞∑
m1=0

· · ·
∞∑

mj=0

1

Γ (αi1 +m1 + 1) . . .Γ
(
αij +mj + 1

)
× k

∫ ∞
a

{(
x− a
θ

)β} k−1
β +αi1+···+αij+m1+···+mj

e
−j
(
x− a
θ

)β
dx

=
θ

β
k

∑
· · ·
∑

1≤i1<i2<···<ij≤n

∞∑
m1=0

· · ·
∞∑

mj=0

1

jδ+m1+···+mj

× Γ (δ +m1 + · · ·+mj)

Γ (αi1 +m1 + 1) . . .Γ
(
αij +mj + 1

) . (19)

After further simplification using the definition from equation (4) in equation (19), we get

Ij (k) =
θ

β
k

∑
· · ·
∑

1≤i1<i2<···<ij≤n

Γ(δ)

Γ (αi1 + 1) . . .Γ
(
αij + 1

)
jδ

× F (j)
A

(
δ, 1, . . . , 1;αi1 + 1, . . . , αij + 1;

1

j
, . . . ,

1

j

)
. (20)

Putting equation (20) in equation (17), we obtain the required result.
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Theorem 4.2. For the four parameter generalized gamma distribution as given in equation (15) for θ < 0
and β > 0,

E

(
Xr:n − a

θ

)k
=
θ

β
k

n∑
j=n−r+1

(−1)
j−n+r−1

(
j − 1

n− r

)
×

∑
· · ·
∑

1≤i1<i2<···<ij≤n

Γ (λ)

Γ (αi1) . . .Γ
(
αij
)
jλ

× F (j)
B

(
1− αi1 , . . . , 1− αij , 1, ..., 1; 1− λ; j, . . . , j

)
where λ =

k

β
+ (αi1 − 1) + · · ·+

(
αij − 1

)
.

Proof. The same expression as given in equation (17) holds with

Ij (k) = k
∑
· · ·
∑

1≤i1<i2<···<ij≤n

∫ a

−∞

(
x− a
θ

)k−1 j∏
t=1

1−
γ

(
αit ,

(
x− a
θ

)β)
Γ (α)

 dx. (21)

By putting equation (8), Ij (k) in equation (21) can be written as

Ij (k) = k
∑
· · ·
∑

1≤i1<i2<···<ij≤n

∞∑
m1=0

· · ·
∞∑

mj=0

1

Γ (αi1 −m1) . . .Γ
(
αij −mj

)
×
∫ a

−∞

((
x− a
θ

)β)( k−1
β )+(αi1−1+···+αij−1)+(−m1−···−mj)

× e
−j
(
x− a
θ

)β
dx

=
θ

β
k

∑
· · ·
∑

1≤i1<i2<···<ij≤n

∞∑
m1=0

· · ·
∞∑

mj=0

jm1+···+mj−λ

× Γ (λ−m1 − · · · −mj)

Γ (αi1 −m1) . . .Γ
(
αij −mj

) . (22)

Substituting

Γ (αit −mt) =
(−1)

mt Γ (αit)

(1− αit)mt
,

Γ (λ−m1 − · · · −mj) =
(−1)

m1+···+mj Γ (λ)

(1− λ)m1+···+mj
,

and following the definition in equation (5), we can represent equation (22) as

Ij (k) =
θ

β
k

∑
· · ·
∑

1≤i1<i2<···<ij≤n

Γ(λ)

Γ (αi1) . . .Γ
(
αij
)
jλ

× F (j)
B

(
1− αi1 , . . . , 1− αij , 1, . . . , 1; 1− λ; j, . . . , j

)
. (23)

Replacing equation (23) in equation (17), we get the desired expression.
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5. Conclusions

Nadarajah and Pal (2008) obtained the evident expressions for the moments of two parameter gamma
and three parameter generalized gamma order statistics as finite sums of Lauricella functions. Those ex-
pressions were shown to take less computational time in order to calculate the moments of order statistics as
compared to the integration formula. This paper obtains the explicit general expressions for the moments
of order statistics from four parameter generalized (which represents more than 50 probability distributions
as limiting forms) as finite sum of the same special functions.
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