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Abstract. In this paper we consider estimation of scale parameter of the half logistic distribution
when life time distribution of a unit in k-unit parallel system belongs to the half logistic distribution.
We construct confidence intervals (CIs) and tolerance intervals (TIs) using generalized pivotal quantity
(GPQ).We derive the Modified Maximum Likelihood Estimator (MMLE) using the approach of Tiku
and Suresh as the likelihood equations are intractable. Simulation studies are carried out to evaluate the
performance of these CIs and TIs and compared them with existing ones. These intervals are illustrated
through real life data due to Lawless (1982).

1. Introduction

In statistical point estimation problem, by taking sample size larger and larger one can obtain an
estimator which will be quite close to the true value of the parameter in some sense, with a very high proba-
bility. Whatever be the sample size, the point estimator may not be equal to the true parameter value. This
is so as there is a margin of uncertainty which can be expressed by the mean square error of estimator. The
point estimator itself cannot tell how much error of uncertainty exists. To overcome this difficulty, one can
use another method of estimation of parameter called the interval estimation. In this method we provide
random subset of the parameter space which contains the true parameter value with certain probability.
Some of the methods to obtain confidence sets are pivotal quantity method, method based on a suitable test
and method based on large sample theory.

The concept of generalized variable has recently become popular in small sample inferences for complex
problems such as Behrens-Fisher problem. These techniques have been shown to be efficient in specific dis-
tributions by using maximum likelihood estimators(MLEs). The generalized variable method was motivated
by the fact that the small sample optimal confidence intervals in statistical problems involving nuisance pa-
rameters may not be available. The method of generalized confidence intervals (GCI) will be used whenever
standard pivotal quantities either do not exist or are difficult to obtain. Weerahandi (1993) introduced
the concept of generalized confidence interval. For some problems where the classical procedures are not
optimal, generalized confidence interval performed well. Krishnamoorthy and Mathew (2003) developed
exact confidence interval and tests for single lognormal mean using ideas of generalized p-values and gener-
alized confidence intervals. Guo and Krishnamoorthy (2005) explained a problem of interval estimation and
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testing for the difference between the quantiles of two populations using generalized variable approach.The
literature survey reveals that during last ten years number of researchers have reported inference for the well
known models using generalized variable approach, which motivated us to study the problem of confidence
interval for the parameter of half logistic distribution under consideration.

A parallel system is one which keeps functioning until at least one of its components is functioning. A
k-out-of-n system is one which functions as long as at least k of its n components are functioning. Kumbhar
and Shirke (2004) gave tolerance limits for lifetime distribution of k-unit parallel system. Potdar and Shirke
(2014) explained inference for the scale parameter of lifetime distribution of k-unit parallel system based on
progressively censored data.

Tiku (1967) obtained modified maximum likelihood equations which have explicit solutions by replacing
the intractable terms by linear approximations. Kantam et al. (2013) obtained estimation and testing in
Type I generalized half logistic distribution by using MMLE. In this article we use MMLE to construct CIs
and TIs.

In Section 2, the half logistic distribution in lifetime distribution of a k-unit parallel system is considered
and discuss maximum likelihood estimator and modified maximum likelihood estimator. Section 3, provides
CIs using large sample theory and using GPQ. Section 4, provides TIs using large sample theory and using
GPQ. In section 5, the performance of the CIs and TIs by using MLE and MMLE for small samples is
investigated using simulations. Results of the simulation study have been reported in same sections. One
real data set has been analyzed for illustrative purpose in section 6.

2. Model and estimation of the scale parameter

Consider a k unit parallel system with independent and identically distributed lifetimes of components.
LetX1, X2, ..., Xk be the lifetimes, (whereXi is the lifetime of ith component) having half logistic distribution
with scale parameter θ. Let lifetime of the system is X = max(X1, X2, ..., Xk). The cdf of X is

F (x; θ) =

[
1− e−x/θ

1 + e−x/θ

]k
; x ≥ 0, θ > 0 (1)

The pdf of X is given by

f(x; θ) =
k

θ

2e−x/θ

(1 + e−x/θ)2

[
1− e−x/θ

1 + e−x/θ

](k−1)

; x ≥ 0, θ > 0 (2)

where θ is scale parameter. In this paper interval estimation (confidence interval and tolerance interval)
based on MLE and MMLE of scale parameter of above model is studied.

2.1. Maximum Likelihood Estimation

Log likelihood function is

L = nlog(k)− nlog(θ) +

n∑
i=1

log

[
2e−xi/θ

(1 + e−xi/θ)2

]
+ (k − 1)

n∑
i=1

log

[
1− e−xi/θ

1 + e−xi/θ

]
(3)

The MLE of θ can be obtained by solving dL
dθ = 0 , where

dL

dθ
=
−n
θ

+
1

θ2

n∑
i=1

xie
−xi/θ

1− e−xi/θ
− 2(k − 1)

θ2

n∑
i=1

xie
−xi/θ

1 + e−xi/θ
(4)

The solution can be obtained by Newton-Raphson Method by taking initial solution θ̂o = X̄
Then the Fisher Information is given by

I(θ) =
−n
θ2

+
2

θ4

n∑
i=1

E

[
X2
i e

−X/θ

(1 + e−Xi/θ)2

]
+

2

θ3

n∑
i=1

E

[
Xi(1− e−Xi/θ)

1 + e−Xi/θ

]
(5)
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+
2(k − 1)

θ4

n∑
i=1

E

[
X2
i e

−Xi/θ(1 + e−2Xi/θ)

(1− e−Xi/θ)2(1 + e−Xi/θ)2

]
+

4(k − 1)

θ3

n∑
i=1

E

[
Xie

−Xi/θ

(1− e−Xi/θ)(1 + e−Xi/θ)

]
(6)

2.2. Modified Maximum Likelihood Estimation

In many situations, the maximum likelihood equations have no explicit solutions. This is due to the
fact that a few terms in the maximum likelihood equations are intractable; see, for example, Tiku (1967,
1968). In this paper we use modified maximum likelihood estimation method and obtain MMLE for a scale
parameter θ of half logistic distribution under consideration.
Let x1 < x2 < ... < xn be an ordered sample of size n from (2) (because the theory of order statistics is
required in the estimation, an ordered sample is itself first considered). Put xi

θ = zi in equation (4) and it
becomes

dL

dθ
= −n+

n∑
i=1

zi − (k − 1)

n∑
i=1

zie
−zi

1− e−zi
− (k + 1)

n∑
i=1

zie
−zi

1 + e−zi
(7)

The maximum likelihood equation (7) does not have explicit solution for θ. This is due to the fact that

the terms G(zi) = zie
−zi

1−e−zi
and K(zi) = zie

−zi

1+e−zi
are intractable. Therefore, we use the modified maximum

likelihood approach to derive approximate MLE for θ with reference to Kantam et al. (2013) and then we
obtain CIs and TIs for above model. In order to obtain an analytical expression for θ, the expression in
equation (7) is approximated by some linear function in the respective population quantiles. The linearization
is done in such a way that the derived MMLE retains all the desirable asymptotic properties of the MLEs.
Let,

G(zi) =
zie

−zi

1− e−zi
≈ ai + bizi (8)

K(zi) =
zie

−zi

1 + e−zi
≈ ci + dizi (9)

where ai, bi, ci, di are to be suitably found. After using the approximation in (7) the solution for θ is

θ̂ =

∑n
i=1 xi − (k − 1)

∑n
i=1 bixi − (k + 1)

∑n
i=1 dixi

n+ (k − 1)
∑n
i=1 ai + (k + 1)

∑n
i=1 ci

(10)

This estimator is named the MMLE of θ, which is a linear estimator in x
′

is. To obtain ai, bi, ci, di, let
pi = i

n+1 , i = 1, 2, ..., n and let ti, t
∗
i be the solutions of following equations, for example

F (ti) = pi −
√
piqi
n

= p∗i (11)

F (t∗i ) = pi +

√
piqi
n

= p∗∗i (12)

with qi = 1− pi and where F(.) is cdf of (2). The intercepts ai, ci and slope bi, di of linear approximations
(8),(9) are respectively given by

bi =
G(t∗i )−G(ti)

t∗i − ti
(13)

di =
k(t∗i )− k(ti)

t∗i − ti
(14)

ai = G(t∗i )− bit∗i (15)

ci = K(t∗i )− dit∗i (16)
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Using the cdf of (2), the expressions for ti, t
∗
i are given by

ti = log

[
1 + p

∗1/k
i

1− p∗1/ki

]
(17)

t∗i = log

[
1 + p

∗∗1/k
i

1− p∗∗1/ki

]
(18)

In the following, we shall see two approximate methods of finding confidence intervals for scale parameter
θ using MLE and MMLE.

Lemma 2.1

Distribution of ( θ̂nθ ) and ( θ̂θ ) , both are free from θ where θ̂n is MLE and θ̂ is MMLE.
Proof: The proof is similar to the one given by Gulati and Mi (2006). This lemma can be used to find GPQ.

3. Confidence Intervals

3.1. Using LS approach

By using asymptotic normal distribution of MLE, we construct confidence interval for θ. Let θ̂n is
the MLE of θ. Therefore by Cramer (1946) θ̂n → AN(θ, σ2(θ̂n)), where σ2(θ̂n) = 1

I(θ̂n)
be the asymptotic

variance.
Therefore, 100(1− α)% asymptotic confidence interval for θ is given by(

θ̂n − τα/2
√
σ̂2(θ̂n), θ̂n + τα/2

√
σ̂2(θ̂n)

)
(19)

where τα/2 is the upper 100(α/2)th percentile of standard normal distribution.
For more details please refer to Potdar and Shirke (2014).

According to Tiku and Suresh (1992) the derived MMLEs retain all the desirable asymptotic properties
of the MLEs. Hence simply by replacing MLEs with MMLEs we can obtain CI using LS approach based on
MMLE.

3.2. Using GV approach

The concept of a generalized confidence interval is due to Weerahandi (1993). One may refer to
Weerahandi (1995) for a detailed discussion along with numerous examples. Consider a random variable X
(scalar or vector) whose distribution f(x, θ, δ) depends on a scalar parameter of interest θ and a nuisance
parameter (parameter that is not of direct inferential interest)δ, where δ could be a vector. Suppose we are
interested in computing a confidence interval for scale parameter θ. Let, x denotes the observed value of
X. To construct a GCI for θ, we first define a GPQ, T (X;x, θ, δ) which is a function of random variable X,
its observed data x, the parameters θ and δ. A quantity T (X;x, θ, δ)is required to satisfy the following two
conditions.
i) For a fixed x, the probability distribution of T (X;x, θ, δ) is free of unknown parameters θ and δ;
ii) The observed value of T (X;x, θ, δ), namely T (x;x, θ, δ) is simply θ.
The percentiles of T (X;x, θ, δ) can then be used to obtain confidence intervals for θ. Such confidence
intervals are referred to as generalized confidence intervals. For example, if T1−τ denotes the 1001−τ th
percentile of T (X;x, θ, δ), then T1−τ is a generalized upper confidence limit for θ. Therefore 100(1 − τ)%
two-sided GCI for parameter θ is given by

(Tτ/2, T1−τ/2) (20)
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Here we define GPQ as

T1(X;x, θ) =
θ̂o
θ̂
θ

(21)

where θ̂o is the MLE obtained using observed data. We note the following:
i) Distribution of T1(X;x, θ) is free from θ, which follows from Lemma (2.1) and

ii) T1(X;x, θ) = θ, since for observed data, θ̂ = θ̂o. A GCI based on T1(X;x, θ) is obtained by using the
following algorithm.

I. Algorithm to obtain GCI for θ using GPQ

1. Input N, n, k, θ, τ .
2. Generate independently and identically distributed observations (U1, U2, ..., Un) from U (0,1).
3. For the given value of the parameter θ, set

xi = −θlog
[

1− U1/k
i

1 + U
1/k
i

]
for i = 1, 2, ..., n. (22)

Then (x1, x2, ..., xn) is the required sample from the distribution of a k-unit parallel system with half logistic
distribution as the component life distribution.
4. Based on observations in step 3, obtain MLE of θ (say θ̂o), using Newton-Raphson method.
5. Generate random sample of size n from F (.) with parameter θ =1.

6. Based on observations in step 5, obtain MLE of θ (say θ̂), using Newton-Raphson method.

7. Compute GPQ, T1 = θ̂o
θ̂

8. Repeat steps (5) to (7) N times, so as to get T11, T12, ..., T1N .
9. Arrange T

′

1is in an ascending order. Denote them by T(11), T(12), ..., T(1N).
10. Compute a 100(1− α)% GCI for θ as(T(1,([(τ2)N ])), T(1,([(1−τ2)N ])).
Extending above algorithm one can estimate coverage probability of the proposed GCI.
In the above algorithm, we can replace MLE by MMLE and obtain GCI, based on MMLE.

4. Tolerance Intervals

4.1. Using LS approach (Large Sample Tolerance Intervals)

There are two types of tolerance intervals namely β-expectation tolerance interval and β-content-(1-γ)
coverage tolerance interval.

4.1.1. β-expectation TI for the distribution function F (.; θ)

Let Xβ(θ) be the lower quantile of order β of the distribution function F (.;θ). Then, we have

Xβ(θ) = −θlog
[

1− β1/k

1 + β1/k

]
(23)

Since θ is unknown, we replace it by its MLE. Hence maximum likelihood estimate of Xβ(θ)

Xβ(θ̂) = −θ̂log
[

1− β1/k

1 + β1/k

]
(24)

having an approximate upper β-expectation TI for F (.; θ) as

I1(X) = (0, Xβ(θ̂)). (25)
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We approximateE[F (Xβ(θ); θ)] using Atwood (1984) and is given as

E[F (Xβ(θ̂); θ)] ≈ β − 0.5F02V ar(θ̂) +
F01V ar(θ̂)F11

F10
(26)

where F10 = ∂F (x;θ)
∂x ,F01 = ∂F (x;θ)

∂θ ,F11 = ∂2F (x;θ)
∂x∂θ ,F02 = ∂2F (x;θ)

∂θ2 with x = Xβ(θ)and all the derivatives are
evaluated at Xβ and θ. We can replace MLE by MMLE and obtain β-expectation TI for F (.; θ) based on
MMLE. Simulated and approximate values of expected coverage of I1(X) using MLE and MMLE have been
reported in section 5 for different values of n, β and k.

4.1.2. β-content-(1− γ) coverage Tolerance Interval

Let I2(X) = (0, Dθ̂) be an upper β-content-(1-γ) coverage TI for the distribution having distribution
function (5). The constant D(> 0) for β(0, 1), γ(0, 1) is to be determined such that

P{F (Dθ̂; θ) ≤ β} = 1− γ (27)

That is

P

{
θ̂ ≤ θ

−log
[
1−β1/k

1+β1/k

]
D

}
= 1− γ (28)

Using asymptotic normality of θ̂, (28) can be equivalently written as

P

{
Z ≤ θ

var(θ)

−log
[
1−β1/k

1+β1/k

]
D

− 1

}
= 1− γ, (29)

where Z → N(0, 1). This gives

D =

−log
[
1−β1/k

1+β1/k

]
1 + var(θ)

θ Z1−γ
(30)

Hence, an upper tolerance limit of β − content− (1− γ) coverage tolerance interval (I2(X)) is given by

U(X) = θ̂

{ −log[ 1−β1/k

1+β1/k

]
1 + var(θ)

θ Z1−γ

}
(31)

4.2. Using GV approach (Generalized Tolerance Intervals)

The problem of computing a one-sided tolerance limit reduces to that of computing a one-sided
confidence limit for the percentile of the relevant probability distribution. That is a (β, (1 − γ)) upper
tolerance limit is simply an (1-γ)th upper confidence limit for the (100β)th percentile of the population. It
is easily seen that a (β, (1− γ)) upper tolerance limit for F (.; θ) is simply a 100(1− γ)% upper confidence

limit for −log
[
1−β1/k

1+β1/k

]
. We use the GV approach for obtaining the aforementioned upper confidence limit.

Let θ̂o is the MLE obtained using observed data. The GPQ for constructing a confidence interval for θ is

given by T1(X;x, θ) = θ̂o
θ̂i/θ

,i=1,2,...,N. The GPQ for −log
[
1−β1/k

1+β1/k

]
is given by T2 = θ̂o

θ̂i/θ

{
− log

[
1−β1/k

1+β1/k

]}
,

i= 1, 2,..., N. The (1−γ)th quantile of T2 is a (1−γ)th generalized upper confidence bound for −log
[
1−β1/k

1+β1/k

]
. Hence (β, (1− γ)) upper tolerance limit for G(.; θ) is (0, T2,1−γ).

A generalized tolerance interval based onT2(X;x, θ)is obtained by using the following algorithm.
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4.3. Algorithm to obtain Generalized Tolerance Interval for F (. ;) using GPQ (GV approach)

1. Input n, N, k, θ, β, γ.
2. Input random sample of size n from F (.) with an unknown parameter θ.

3. Based on observations in step 2, obtain MLE of θ (say θ̂o), using Newton-Raphson method.
4. Generate random sample of size n from F (.) with parameter θ=1.

5. Based on observations in step 4, obtain MLE of θ (sayθ̂), using Newton-Raphson method.

6. Compute GPQ, T2 = θ̂o
θ̂i/θ

{
− log

[
1−β1/k

1+β1/k

]}
, i= 1, 2,..., N.

7. Repeat steps (4) to (6) N times, so as to get T21, T22, ..., T2N .
8. Arrange T

′

2is in an ascending order. Denote them by T(21), T(22), ..., T(2N).
9. Compute an upper tolerance limit of generalized TI I2(X) = (0, T2,1−γ).
Extending above algorithm one can estimate coverage probability of the proposed generalized TI.
In the above algorithm, we can replace MLE by MMLE and obtain generalized TI, based on MMLE.

5. Simulation study

We conduct extensive simulation experiments to evaluate performance of CIs (LS and GV) based on
MLE and MMLE. Using, interval (19) large sample CI is computed. GCI is computed using algorithm given
in section (3). In the simulation study, we generate n observations on X = Max{Xi, i = 1, 2, ..., k}, where
Xi, i = 1, 2, ..., k are iid half logistic distribution with scale parameter θ. Using Newton-Raphson method,
we obtain the MLE and using Kantam’s approach we obtain MMLE; based on the generated n observations.
Repeating the process 10,000 times we estimate coverage of both intervals for n=3,4,5,6,7,8,9,10,15,30,50
and k=2,3.

Figures in the first row are based on MLE, while figures in the second row are based on MMLE. From
tables 1-4, we observe that simulated coverage of GCI does not differ significantly whether it can be computed
from MLE as well as MMLE. However, large sample approach underestimates the coverage probabilities for
most of the scenarios, especially when the sample size is small and (or) the parameter θ is large. Also the
performance of the proposed GCI does not depend on θ. However, as the sample size is large, the two
estimators (MLE, MMLE) are equally efficient.

We investigate coverage (numerical and simulation) of β-expectation TI for F (.,θ) with k = 3 and β=
0.90, 0.95, 0.975, 0.99 by using MLE and MMLE. Figures in the 1st row are based on MLE, while figures in
the 2nd row are based on MMLE. An upper β-expectation tolerance limit is given in equation (24). Results
of the simulation study for the β-expectation tolerance interval, which is tabulated in table 5, indicate that,
the estimated expectation and simulation mean for small sample size are marginally lower than the nominal
value. As the sample size increases, the performance of tolerance intervals improves.

A simulation study of an upper β-content- (1-γ) coverage TI, having an upper limit (31) is also conducted,
for k=2 and for known values of n,β, θ and γ. In this simulation study 5000 samples from F (.;θ) were
generated and for each of the samples U(X) was computed, for different combinations of β, θ , γ. The

proportion of samples for which -θlog

[
1−β1/k

1+β1/k

]
exceeded U(X) was computed 100 times and the mean of

these 100 proportions is taken as simulated value of γ. The simulation study for the generalized TI was
carried out as algorithm (4.1). Table 7 gives the simulated values of confidence level γ when k=2, θ =2
respectively.

The proposed confidence interval and tolerance interval performs satisfactory for small to moderate
sample sizes. These intervals are superior to the large sample confidence intervals.

6. Real Data Example

Lawless (1982) provided real data, which represents the number of million revolutions before failure for
each of 23 ball bearings in a life test: 17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.4, 51.84, 51.96, 54.12, 55.56,
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67.8,68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4. Half logistic distribution
satisfactory fit to this data. We consider this data as outcome for lifetime for k-unit parallel system. Results
obtained from this data are given in Table 9.
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Table 1: Mean coverage of Confidence Intervals (using MLE and MMLE) for half logistic distribution (k-unit parallel system):
I1) Large Sample procedure I2) Generalized variable approach when θ=1, k=2

coverage 0.90 0.95 0.97 0.99

n I1 I2 I1 I2 I1 I2 I1 I2

0.8587 0.9094 0.8906 0.9509 0.9066 0.9785 0.9421 0.9955
3

0.7559 0.9012 0.7712 0.9458 0.8341 0.9668 0.8661 0.9883

0.8698 0.9046 0.9114 0.9557 0.9118 0.9765 0.9592 0.9946
4

0.8312 0.9024 0.8821 0.9584 0.9045 0.9664 0.9245 0.9898

0.8857 0.9058 0.9127 0.9568 0.9233 0.9768 0.9534 0.9921
5

0.8346 0.9035 0.8885 0.9532 0.9242 0.9731 0.9427 0.9934

0.8819 0.9030 0.9214 0.9522 0.9381 0.9874 0.9662 0.9935
6

0.8647 0.9065 0.9276 0.9511 0.9270 0.9787 0.9513 0.9950

0.8837 0.9065 0.9012 0.9528 0.9357 0.9798 0.9582 0.9936
7

0.8883 0.9047 0.9381 0.9520 0.9319 0.9724 0.9674 0.9931

0.8704 0.9098 0.9241 0.9509 0.9245 0.9778 0.9754 0.9906
8

0.8914 0.9048 0.9350 0.9537 0.9517 0.9721 0.9659 0.9937

0.8854 0.9004 0.9151 0.9568 0.9421 0.9718 0.9668 0.9947
9

0.8940 0.9024 0.9382 0.9553 0.9484 0.9701 0.9721 0.9964

0.8942 0.9017 0.9231 0.9549 0.9487 0.9780 0.9634 0.9965
10

0.8955 0.9035 0.9374 0.9565 0.9541 0.9760 0.9772 0.9935

0.8921 0.9039 0.9264 0.9566 0.9462 0.9708 0.9721 0.9911
15

0.9069 0.9066 0.9493 0.9531 0.9562 0.9734 0.9732 0.9975

0.8927 0.9097 0.9547 0.9509 0.9619 0.9767 0.9814 0.9997
30

0.8999 0.9024 0.9530 0.9520 0.9686 0.9786 0.9883 0.9948

0.8901 0.9164 0.9532 0.9507 0.9752 0.9744 0.9921 0.9906
50

0.9099 0.9035 0.9554 0.9543 0.9710 0.9779 0.991 0.9936
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Table 2: Mean coverage of Confidence Intervals (using MLE and MMLE) for half logistic distribution (k-unit parallel system):
I1) Large Sample procedure I2) Generalized variable approach when θ=1, k=3

coverage 0.90 0.95 0.97 0.99

n I1 I2 I1 I2 I1 I2 I1 I2

0.8506 0.9055 0.887 0.9515 0.9162 0.9489 0.9395 0.9984
3

0.7962 0.9050 0.8548 0.9449 0.8738 0.9667 0.9132 0.9899

0.8321 0.9087 0.9144 0.9534 0.9133 0.9764 0.9519 0.9968
4

0.8631 0.8996 0.9082 0.9505 0.9242 0.9669 0.9514 0.9904

0.8685 0.9094 0.9223 0.9501 0.9254 0.9748 0.9583 0.9975
5

0.8991 0.9034 0.9371 0.9534 0.9883 0.9702 0.9472 0.9968

0.8651 0.9064 0.9244 0.9582 0.9306 0.9701 0.9621 0.9945
6

0.8954 0.9068 0.9421 0.9556 0.9581 0.9768 0.9731 0.9947

0.8593 0.9015 0.9113 0.9557 0.9373 0.9764 0.9745 0.9962
7

0.8951 0.9025 0.9451 0.9584 0.9524 0.9724 0.9874 0.9910

0.8721 0.9034 0.9267 0.9536 0.9270 0.9781 0.9762 0.9932
8

0.8955 0.9033 0.9428 0.9560 0.9597 0.9758 0.9798 0.9911

0.8564 0.9022 0.9187 0.9559 0.9417 0.9732 0.9735 0.9948
9

0.9064 0.9004 0.9439 0.9504 0.9601 0.9734 0.9793 0.9963

0.8522 0.9007 0.9209 0.9501 0.9407 0.9735 0.9564 0.9954
10

0.9012 0.9071 0.9445 0.9584 0.9581 0.9787 0.9884 0.9984

0.8511 0.9002 0.9212 0.9542 0.9416 0.9704 0.9731 0.9987
15

0.8996 0.9069 0.9430 0.9588 0.9668 0.9786 0.9898 0.9934

0.8724 0.9082 0.9574 0.9518 0.9669 0.9789 0.9837 0.9914
30

0.9004 0.9020 0.9560 0.9564 0.9678 0.9780 0.9980 0.9903

0.8985 0.9188 0.9554 0.9529 0.9765 0.9777 0.9994 0.9910
50

0.9032 0.9099 0.9504 0.9567 0.9721 0.9788 0.9904 0.9908
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Table 3: Mean coverage of Confidence Intervals (using MLE and MMLE) for half logistic distribution (k-unit parallel system):
I1) Large Sample procedure I2) Generalized variable approach when θ=5, k=2

coverage 0.90 0.95 0.97 0.99

n I1 I2 I1 I2 I1 I2 I1 I2

0.8546 0.9065 0.8751 0.9524 0.9125 0.9725 0.9347 0.9953
3

0.7652 0.9050 0.8341 0.9448 0.8364 0.9669 0.8741 0.9878

0.8684 0.9025 0.9123 0.9536 0.9109 0.9748 0.9494 0.9975
4

0.8344 0.9051 0.8962 0.9585 0.8762 0.9664 0.9193 0.9932

0.8725 0.9022 0.9264 0.9558 0.9242 0.9767 0.9539 0.9930
5

0.8669 0.9084 0.8937 0.9564 0.9223 0.9784 0.9365 0.9965

0.8575 0.9035 0.9273 0.9517 0.9252 0.9884 0.9584 0.9919
6

0.8671 0.9032 0.9141 0.9528 0.9321 0.9721 0.9541 0.9942

0.8481 0.9098 0.9126 0.9504 0.9311 0.9734 0.9530 0.9941
7

0.8954 0.9028 0.9142 0.9534 0.9356 0.9724 0.9780 0.9920

0.8493 0.9004 0.9288 0.9588 0.9474 0.9709 0.9593 0.9961
8

0.8932 0.9021 0.9365 0.9512 0.9463 0.9734 0.9612 0.9951

0.8613 0.9051 0.9195 0.9557 0.9536 0.9774 0.9612 0.9938
9

0.8957 0.9054 0.9387 0.9584 0.9521 0.9780 0.9753 0.9982

0.8742 0.9039 0.9215 0.9506 0.9489 0.9791 0.9669 0.9909
10

0.9061 0.9087 0.9463 0.9521 0.9597 0.9737 0.9791 0.9938

0.8870 0.9094 0.9337 0.9538 0.9420 0.9764 0.9741 0.9934
15

0.9010 0.9090 0.9445 0.9550 0.9669 0.9781 0.9889 0.9955

0.8967 0.9037 0.9542 0.9519 0.9652 0.9795 0.9771 0.9909
30

0.9065 0.9021 0.9535 0.9521 0.9780 0.9770 0.9878 0.9980

0.9009 0.9019 0.9503 0.9507 0.9710 0.9784 0.9840 0.9997
50

0.9036 0.9087 0.9564 0.9595 0.9784 0.9781 0.9902 0.9973



Godase, Shirke and Kashid / ProbStat Forum, Volume 10, April 2017, Pages 34–50 45

Table 4: Mean coverage of Confidence Intervals (using MLE and MMLE) for half logistic distribution (k-unit parallel system):
I1) Large Sample procedure I2) Generalized variable approach when θ=5, k=3

coverage 0.90 0.95 0.97 0.99

n I1 I2 I1 I2 I1 I2 I1 I2

0.8346 0.9018 0.8794 0.9615 0.9134 0.9706 0.9342 0.9945
3

0.7881 0.8949 0.8652 0.9586 0.8612 0.9668 0.9094 0.9889

0.8464 0.9036 0.9155 0.9533 0.9116 0.9745 0.9431 0.9965
4

0.8593 0.9065 0.8947 0.9534 0.8994 0.9787 0.9531 0.9902

0.8737 0.9003 0.9235 0.9509 0.9258 0.9785 0.9505 0.9926
5

0.8962 0.9031 0.9283 0.9563 0.9421 0.9754 0.9714 0.9901

0.8551 0.9099 0.9243 0.9564 0.9263 0.9859 0.9546 0.9919
6

0.8753 0.9068 0.9351 0.9514 0.9497 0.9762 0.9773 0.9954

0.8448 0.9064 0.9126 0.9551 0.9327 0.9764 0.9583 0.9909
7

0.8854 0.9014 0.9381 0.9584 0.9541 0.9732 0.9784 0.9975

0.8419 0.9058 0.9244 0.9536 0.9412 0.9799 0.9517 0.9944
8

0.8962 0.9011 0.9453 0.9536 0.9673 0.9764 0.9782 0.9984

0.8639 0.9020 0.9136 0.9590 0.9546 0.9706 0.9634 0.9959
9

0.8971 0.9064 0.9487 0.9531 0.9618 0.9721 0.9823 0.9951

0.8711 0.9064 0.9244 0.9564 0.9490 0.9788 0.9637 0.9967
10

0.9013 0.9033 0.9498 0.9564 0.9635 0.9708 0.9843 0.9962

0.8804 0.9055 0.9337 0.9542 0.9447 0.9725 0.9765 0.9921
15

0.9061 0.9062 0.9558 0.9501 0.9728 0.9780 0.9960 0.9937

0.8955 0.9082 0.9502 0.9554 0.9641 0.9744 0.9734 0.9904
30

0.9035 0.9024 0.9562 0.9584 0.9734 0.9789 0.9924 0.9957

0.9016 0.9109 0.9554 0.9565 0.9770 0.9714 0.9807 0.9908
50

0.9012 0.9034 0.9564 0.9532 0.9741 0.9788 0.9950 0.9924
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Table 5: Simulated mean and estimated expectation of the coverage of approximate β-expectation TI using MLE and MMLE
for half logistic distribution(k unit parallel system)

α = 3

β(θ = 1.0) β(θ=2.0)

n 0.90 0.95 0.97 0.99 0.90 0.95 0.97 0.99

2 0.8232 0.8623 0.9025 0.9425 0.8425 0.8841 0.9024 0.9623
(0.8351) (0.8526) (0.8914) (0.9514) (0.8521) (0.8741) (0.9142) (0.9667)

0.8140 0.0.8714 0.9120 0.9428 0.8389 0.8630 0.9150 0.9520
(0.7924) (0.8832) (0.9047) (0.9417) (0.8340) (0.8605) (0.9240) (0.9567)

3 0.8578 0.8902 0.9394 0.9531 0.8415 0.9124 0.9433 0.9640
(0.8435) (0.8864) (0.9376) (0.9442) (0.8427) (0.9075) (0.9302) (0.9641)

0.8471 0.9171 0.9341 0.9507 0.8434 0.8964 0.9349 0.9518
(0.8514) (0.9034) (0.9244) (0.9514) (0.8594) (0.9094) (0.9434) (0.9546)

4 0.8711 0.9133 0.9407 0.9746 0.8360 0.9032 0.9344 0.9711
(0.8704) (0.9079) (0.9546) (0.9737) (0.8317) (0.9143) (0.9494) (0.9802)
0.0.8574 0.8931 0.9475 0.9644 0.8508 0.9166 0.9464 0.9675
(0.8424) (0.8934) (0.9442) (0.9746) (0.8433) (0.9094) (0.9423) (0.9755)

5 0.8646 0.9045 0.9435 0.9780 0.8620 0.9230 0.9591 0.9745
(0.8784) (0.9147) (0.9341) (0.9774) (0.8742) (0.9324) (0.9646) (0.9782)

0.8664 0.9284 0.9515 0.9647 0.8734 0.9042 0.9418 0.9635
(0.8779) (0.9121) (0.9427) (0.9720) (0.8794) (0.9184) (0.9536) (0.9741)

6 0.8784 0.9338 0.9535 0.9841 0.8718 0.9150 0.9594 0.9782
(0.8772) (0.9360) (0.9566) (0.9822) (0.8842) (0.9222) (0.9564) (0.9749)

0.8640 0.9174 0.9574 0.9727 0.8709 0.9108 0.9488 0.9870
(0.8724) (0.9044) (0.9511) (0.9819) (0.8717) (0.9149) (0.9560) (0.9895)

7 0.8633 0.9435 0.9623 0.9837 0.8843 0.9327 0.9671 0.9846
(0.8617) (0.9474) (0.9604) (0.9849) (0.8811) (0.9443) (0.9712) (0.9944)
0.0.8532 0.9219 0.9579 0.9737 0.8797 0.9281 0.9520 0.9708
(0.8405) (0.9147) (0.9654) (0.9745) (0.8835) (0.9250) (0.9634) (0.9832)

8 0.8898 0.9233 0.9635 0.9808 0.8670 0.9237 0.9665 0.9888
(0.8712) (0.9208) (0.9647) (0.9849) (0.8789) (0.9469) (0.9694) (0.9841)
0.0.8947 0.9347 0.9610 0.9737 0.8770 0.9339 0.9528 0.9894
(0.8871) (0.9349) (0.9538) (0.9742) (0.8846) (0.944) (0.9639) (0.9884)
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Table 6: Simulated mean and estimated expectation of the coverage of approximate β-expectation TI using MLE and MMLE
for for half logistic distribution(k unit parallel system). Continued

α = 3

β(σ = 1.0) β(σ=2.0)

n 0.90 0.95 0.97 0.99 0.90 0.95 0.97 0.99

9 0.8704 0.9221 0.9622 0.9847 0.8717 0.9342 0.9614 0.9853
(0.8822) (0.9204) (0.9634) (0.9827) (0.8764) (0.9432) (0.9780) (0.9874)
0.0.8987 0.9318 0.9649 0.9838 0.8771 0.9211 0.9526 0.9860
(0.8935) (0.9244) (0.9647) (0.9873) (0.8704) (0.9394) (0.9643) (0.9897)

10 0.8874 0.9235 0.9524 0.9846 0.8834 0.9414 0.9601 0.9813
(0.8864) (0.9314) (0.9590) (0.9809) (0.8918) (0.9432) (0.9744) (0.9881)
0.0.8897 0.9347 0.9628 0.9857 0.8743 0.9309 0.9630 0.9840
(0.8808) (0.9411) (0.9643) (0.9849) (0.8810) (0.9447) (0.9714) (0.9844)

15 0.8934 0.9364 0.9641 0.9933 0.8797 0.9333 0.9644 0.9832
(0.8970) (0.9341) (0.9737) (0.9847) (0.8742) (0.9338) (0.973) (0.9849)
0.0.8905 0.9489 0.9749 0.9805 0.8817 0.9364 0.9615 0.9875
(0.8933) (0.9434) (0.9724) (0.9919) (0.8935) (0.9447) (0.9708) (0.9844)

30 0.8891 0.9404 0.9770 0.9930 0.8987 0.9528 0.9649 0.9945
(0.9032) (0.9497) (0.9618) (0.9924) (0.9012) (0.9540) (0.9628) (0.9827)
0.0.9040 0.9414 0.9731 0.9897 0.8827 0.9415 0.9715 0.9855
(0.9034) (0.9347) (0.9745) (0.9940) (0.8904) (0.9546) (0.9748) (0.9849)

50 0.9097 0.9422 0.9624 0.9988 0.9035 0.9522 0.9790 0.9910
(0.9055) (0.9546) (0.9634) (0.9994) (0.9144) (0.9549) (0.9743) (0.9928)
0.0.9007 0.9580 0.9737 0.9914 0.8960 0.9520 0.9720 0.9986
(0.9132) (0.9546) (0.9748) (0.9940) (0.9083) (0.9534) (0.9814) (0.9994)
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Table 7: Coverage probabilities of Tolerance Intervals for half logistic distribution(k unit parallel system) I1) Large sample
procedure I2) Generalized variable approach θ=1.0, k=2.0

γ=0.90 γ=0.95

coverage β=0.90 β=0.95 β=0.90 β=0.95

n I1 I2 I1 I2 I1 I2 I1 I2

0.6872 0.9034 0.6620 0.8912 0.5625 0.9415 0.5784 0.9414
2

0.6751 0.9081 0.6741 0.8905 0.5502 0.9490 0.5649 0.9420

0.8084 0.8901 0.7741 0.8944 0.7150 0.9477 0.7512 0.9475
3

0.7946 0.9083 0.7803 0.8994 0.7244 0.9410 0.7501 0.9448

0.8216 0.9099 0.7914 0.9054 0.8278 0.9519 0.8534 0.9433
4

0.8416 0.9075 0.8025 0.8919 0.8246 0.9402 0.8428 0.9518

0.8520 0.9016 0.8326 0.9071 0.8789 0.9547 0.8746 0.9505
5

0.8612 0.9075 0.8489 0.9052 0.8847 0.9533 0.8824 0.9520

0.8652 0.9029 0.8656 0.9028 0.8964 0.9510 0.9018 0.9546
6

0.8688 0.9010 0.8607 0.9017 0.9011 0.9519 0.9035 0.9515

0.8704 0.9011 0.8748 0.9052 0.8994 0.9548 0.9064 0.9545
7

0.8724 0.8947 0.8721 0.9005 0.9035 0.9547 0.9048 0.9585

0.8669 0.8902 0.8652 0.9044 0.9019 0.9635 0.9075 0.9549
8

0.8723 0.9054 0.8699 0.9097 0.9021 0.9594 0.9147 0.9577

0.8649 0.9091 0.8458 0.9047 0.9046 0.9516 0.9090 0.9548
9

0.8794 0.9033 0.8735 0.9019 0.9197 0.9444 0.9134 0.9533

0.8784 0.9018 0.8659 0.9137 0.9145 0.9474 0.9015 0.9664
10

0.8733 0.9072 0.8720 0.8980 0.9249 0.9520 0.9287 0.9514

0.8851 0.9034 0.8619 0.8975 0.9161 0.9591 0.9233 0.9501
15

0.8749 0.9050 0.8649 0.9081 0.9234 0.9540 0.9247 0.9575

0.8851 0.9194 0.8721 0.9022 0.9291 0.9578 0.9344 0.9545
30

0.8802 0.9048 0.8798 0.9071 0.9344 0.9541 0.9348 0.9579

0.9061 0.9075 0.8849 0.9064 0.9438 0.9599 0.9246 0.9515
50

0.9024 0.9089 0.8932 0.9087 0.9405 0.9501 0.9447 0.9522
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Table 8: Coverage probabilities of Tolerance Intervals for half logistic distribution(k unit parallel system) I1) Large sample
procedure I2) Generalized variable approach θ=2.0, k=2.0

γ=0.90 γ=0.95

coverage β=0.90 β=0.95 β=0.90 β=0.95

n I1 I2 I1 I2 I1 I2 I1 I2

0.6546 0.8915 0.6789 0.8930 0.5847 0.9464 0.5649 0.9512
2

0.6625 0.8987 0.6714 0.8951 0.5801 0.9420 0.5642 0.9494

0.7984 0.8994 0.8124 0.8920 0.7724 0.9441 0.7487 0.9434
3

0.7846 0.8946 0.7948 0.8924 0.7439 0.9418 0.7411 0.9420

0.8214 0.9048 0.8312 0.8943 0.8648 0.9574 0.8597 0.9505
4

0.8370 0.9021 0.8361 0.9084 0.8502 0.9582 0.8510 0.9404

0.8315 0.9098 0.8541 0.9077 0.8812 0.9491 0.9031 0.9581
5

0.8524 0.9037 0.8581 0.8961 0.8945 0.9583 0.9019 0.9532

0.8565 0.9064 0.8491 0.9038 0.9184 0.9572 0.9088 0.9465
6

0.8694 0.9019 0.8656 0.9019 0.9254 0.9484 0.9102 0.9545

0.8535 0.9082 0.8528 0.9025 0.8896 0.9550 0.9194 0.9575
7

0.8651 0.9046 0.8664 0.9027 0.8987 0.9561 0.9136 0.9544

0.8742 0.9018 0.8729 0.9053 0.9091 0.9540 0.9145 0.9515
8

0.8746 0.9134 0.8637 0.9044 0.9102 0.9527 0.9210 0.9574

0.8578 0.9015 0.8665 0.9108 0.9055 0.9549 0.8829 0.9515
9

0.8798 0.9028 0.8735 0.9067 0.9132 0.9518 0.8938 0.9566

0.8414 0.9139 0.8506 0.9009 0.8965 0.9506 0.9135 0.9514
10

0.8784 0.9014 0.8760 0.9147 0.9294 0.9589 0.9216 0.9542

0.8675 0.9004 0.8625 0.8954 0.9235 0.9448 0.9142 0.9555
15

0.8704 0.9084 0.8734 0.9063 0.9264 0.9546 0.9225 0.9587

0.8628 0.9095 0.8509 0.9054 0.9122 0.9522 0.9228 0.9689
30

0.8846 0.9062 0.8846 0.9075 0.9346 0.9541 0.9380 0.9547

0.8915 0.9051 0.8855 0.9049 0.9247 0.9543 0.9497 0.9551
50

0.8991 0.9041 0.8975 0.9034 0.9401 0.9588 0.9574 0.9587
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Table 9: Confidence intervals (using LS and GV approach) for real data.

Coverage Using Estimator Using LS approach Using GV approach

(12.16498,23.688612) (11.745021,20.20297)
90% MLE

Length=11.523632 Length=8.457949

(11.38794,25.283543) (10.402121,20.805491)
MMLE

Length=13.895603 Length=10.40337

(16.25966,36.54188) (8.180416,16.23732)
95% MLE

Length=20.28222 Length=8.056904

(15.737967,37.332039) (8.366712,14.836193)
MMLE

Length=21.594072 Length=6.469481

(8.801689,26.805990) (6.711657,15.89151)
99% MLE

Length=18.004301 Length=9.179853

(9.644007,25.425999) (7.884905,14.698532)
MMLE

Length=15.781992 Length=6.813627


