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Characterization of One-Truncation Parameter Family of
Distributions Through Expectation of Function of Order Statistics
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Abstract. For characterization of one (left or right)-truncation parameter families of distributions
one needs any arbitrary non-constant function of order statistics only in place of various alternative ap-
proaches available in the literature. Path breaking different approach for characterization of general setup
of one-truncation parameter family of distributions through expectation of any arbitrary non constant
differentiable function of order statistics is obtained. Applications and examples are given for illustrative
purpose.

1. Introduction

One-truncation parameter family of distributions with probability density function (pdf)

fj(x; θ) =



 q1(θ)h1(x); for j = 1, a < θ < x < b

0, otherwise, q2(θ)h2(x); for j = 2, a < x < θ < b

0, otherwise,

(1)

where −∞ ≤ a < b ≤ ∞ are known constant, a < θ < x < b for j = 1 , a < x < θ < b for j = 2,
hj ; (j = 1, 2) are positive absolutely continuous functions, qj ; (j = 1, 2) are everywhere differentiable func-
tions is characterized.

Since hj(.); (j = 1 or 2) is positive and the range is truncated by truncation parameter θ from left or
right respectively q−1

1 (b) = q−1
2 (a) = 0. Through out the paper q−1

j (.) is reciprocal of qj(.).

Most powerful application of characterizations of distribution is to address a fundamental problem of
identification of an appropriate model that can describe the real situation which generate the observations.
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For instant 60 observations of random phenomena observed and one group of student fit normal distribu-
tion where other group fit log-normal distribution with almost same p-value. This is one of case where
characterization results provide navigation tools for correct direction of further study (research). Therefore
characterizations of distribution is of general interest to mathematical community, to probabilists and statis-
ticians as well as to researchers and practitioner industrial engineering and operation research and various
scientist specializing in natural and behavior science, in particular those who are interested in foundation
and application of probabilistic model building. Motivated by such future in this paper, identity of distri-
bution and equality of expectation is used to, characterized (left or right)-truncation parameter family of
distributions defined in (1) through expectation of any arbitrary non-constant differentiable function of order
statistics which includes characterization of negative exponential distribution, Pareto distribution as special
case of f1(x; θ) where as power function distribution, uniform distribution, generalize uniform distribution
as special case of f2(x; θ).

Several characterizations of these distributions by various approaches are available in the literature. No-
tably for power function distribution independence of suitable function of order statistics and distributional
properties of transformation of exponential variable used by Fisz (1958), Basu (1965), Govindarajulu (1966)
and Dallas (1976), linear relation of conditional expectation used by Beg and Kirmani(1974), recurrence
relations between expectations of function of order statistics used by Alli and Khan (1998), record valves
used by Nagraja (1977), lower record statistics used by Faizan and Khan(2011), product of order statistics
used by Arslan (2011) and Lorenz curve used by Moothathu (1986) are available in the literature.

Other approaches such as coefficient of correlation of order statistics of sample of size two used by Bar-
toszyn’ski (1980), Terreel (1983 ), Fernando and Rebollo (1997), maximal correlation coefficient between
order statistics, of identically distributed spacings etc [used by Stapleton (1963), Arnold and Meeden (1976),
Driscoll, M.F. (1978), Shimizu and Huang (1983), Abdelhamid (1985)], power contraction of order statistics
by Navarro(2008), Random translation, dilation and contraction of order Statistics by Imtiyaz, Shah, Khan
and Barakat(2014), moment conditions used by Lin (1988), Too and Lin (1989), moments of n-fold convolu-
tion modulo one used by Chow and Huang (1999), inequalities of chernoff-type used by Sumrita and Subir
(1990) for characterization of uniform distribution.

Various approaches were used for characterization of negative exponential distribution. Amongst many
other Fisz (1958), Tanis (1964), Rogers (1963) and Fergusion (1967) used properties of identical distributions,
absolute continuity, constant regression of adjacentt order statistics, Fergusion (1964, 1965) and Crawford
(1966), used linear regression of adjacent order statistics of random, independent and non degenerate ran-
dom variables, Nagaraja (1977, 1988) used linear regression of two adjacent record values were as Khan,
Mohd and Ziaul (2009) used difference of two conditional expectations, conditioned on a non-adjacent order
statistics to characterized negative exponential distribution.

Economic variation in reported income and true income used by Krishnaji (1970), Nagesh (1974), in-
dependence of suitable function of order statistics used by Henrick (1970), Ahsanullah (1973, 1974 ), Shah
(1981) and Dimaki and Evdokia (1993), linear relation of conditional expectation used by Beg and Kirmani
(1974), Dallas (1976), recurrence relations between expectations of function of order statistics used by Alli
and Khan (1998), exponential and related distributions used by Tavangar and Asadi(2010), for characteri-
zation of Pareto distribution.

Necessary and sufficient conditions for pdf f(x; θ) to be fj(x; θ), (j = 1or2), defined in (1) is established
in section 2. Section 3 is devoted for applications where as section 4 is devoted to examples for illustrative
purpose.
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2. Characterization

Theorem 2.1. Let X1, X2, ..., Xn be a random sample of size n from distribution function Fj ; j = 1, 2. Let
X1:n < X2:n, ..., < Xn:n be the set of corresponding order statistics. Assume that Fj ; j = 1, 2 continuous
on the interval (a, b) where −∞ < a < b < ∞. Let g(.) be non-constant differentiable function of tth order
statistic (j = 1, t = 1 and j = 2, t = n) on the interval (a, b) where −∞ < a < b <∞. Then p.d.f. fj(x; θ)
of Fj to be fj(x; θ), j = 1, 2 defined in (1) if and only if

g(θ) = E[φj(Xt:n)] = E
[
g(Xt:n) +

d
dXt:n

g(Xt:n)
d

dXt:n
log[q−1

j (Xt:n)

]
. (2)

Proof. Given fj(x; θ), j = 1, 2 defined in (1), for necessity of (2) if φj(Xt:n) is such that g(θ) = E[φj(Xt:n)]
where g(θ) is differentiable function then using fj(xt:n; θ); pdf of tth order statistic j = 1, t = 1 and
j = 2, t = n one gets,

g(θ) =


∫ b
θ
φ1(x1:n)f1(x1:n; θ)dx1:n, for j = 1, t = 1,∫ θ

a
φ2(xn:n)f2(xn:n; θ)dxn:n, for j = 2, t = n

(3)

Based on fj(x : θ) given in (1), substituting fj(xt:n : θ) for j = 1, t = 1 and j = 2, t = n,the (3) will be

g(θ) =


∫ b
θ
φ1(x1:n)nqn1 (θ)q−n+1

1 (x1:n; θ)h1(x1:n)dx1:n, for j = 1, t = 1,∫ θ
a
φ2(xn:n)nqn2 (θ)q−n+1

2 (xn:n; θ)h2(xn:n)dxn:n, for j = 2, t = n

(4)

After simplification the (4) will be

g(θ)

nqn1 (θ)
=

∫ b

θ

φ1(x1:n)q−n+1
1 (x1:n; θ)h1(x1:n)dx1:n; for j = 1, t = 1 (5)

and

g(θ)

nqn2 (θ)
=

∫ θ

a

φ2(xn:n)q−n+1
2 (xn:n; θ)h2(xn:n)dxn:n; for j = 1, t = 1 (6)

Differentiating (5)and (6) with respect to θ on both sides and replacing X1:n for θ in (5) and replacing Xn:n

for θ in (6)and simplifying one gets
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φj(Xt:n) = g(Xt:n) +
d

dXt:n
g(Xt:n)

d
dXt:n

log[q−1
j (Xt:n)]

, j = 1, t = 1 and j = 2, t = n. (7)

Note that

Mj(Xt:n) =
d

dXt:n
log[q−1

j (Xt:n)], j = 1, t = 1 and j = 2, t = n, (8)

is finite function of Xt:n. Further φj(Xt:n) derived in (7) reduces to (2). This establishes necessity of
(2). Conversely given (2) kj(xt:n; θ) be any arbitrary non constant integrable function of tth order statistic,
j = 1, t = 1 and j = 2, t = n such that

g(θ) =


∫ b
θ
φ1(x1:n)k1(x1:n; θ)dx1:n, for j = 1, t = 1,∫ θ

a
φ2(xn:n)k2(xn:n; θ)dxn:n for j = 2, t = n.

(9)

Since q1 is increasing function with q−1
1 (b) = 0 and q2 is decreasing function with q−1

2 (a) = 0 following
identity holds.

g(θ) ≡


∫ b
θ
−qn1 (θ)

[
d

dx1:n
g(x1:n)q−n1 (x1:n)

]
dx1:n, for j = 1, t = 1,

∫ θ
a
qn2 (θ)

[
d

dxn:n
g(xn:n)q−n2 (xn:n)dxn:n, for j = 2, t = n.

(10)

Differentiating integrand of (10) q−nj (xt:n)g(xt:n) and tacking d
dxt:n

q−n1 (xt:n) as one factor j = 1, t = 1 and
j = 2, t = n one gets (10) as

g(θ) =


∫ b
θ
φ1(x1:n)

[
− q−n1 (θ) d

dx1:n
q−n1 (x1:n)

]
dx1:n, for j = 1, t = 1,

∫ θ
a
φ2(xn:n)

[
q−n2 (θ) d

dxn:n
q−n2 (xn:n)

]
dxn:n for j = 2, t = n.

(11)

where φj(xt:n) is as derived in (7)(j = 1, t = 1 and j = 2, t = n). From (9) and (11) one gets

kj(xt:n; θ) =




−qn1 (θ) d

dx1:n
q−n1 (x1:n); for j = 1, a < θ < x < b

0, otherwise,
qn2 (θ) d

dxn:n
q−n2 (xn:n); for j = 2, a < x < θ < b

0, otherwise,

(12)
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Since q1 is increasing function with q−1
1 (b) = 0 and q2 is decreasing function with q−1

2 (a) = 0 integrating
both sides of (12) on interval (a, b) for j = 1, t = 1 and j = 2, t = n one gets

1 =


∫ b
θ
k1(x1:n; θ)dx1:n, for j = 1, t = 1,∫ θ

a
k2(xn:n; θ)dxn:n, for j = 2, t = n.

(13)

Using (12) and (13),
[
kj(xt:n; θ)

]
n=1

reduces to fj(x; θ) defined in (1) which establishes sufficiency of (2).

Remark : Using φ(Xt:n) derived in (7), the fj(x; θ) given in (1) can be determined by

Mj(xt:n) =
d

dXt:n
g(Xt:n)

φ(Xt:n)− g(Xt:n)
. (14)

and pdf is given by

fj(x; θ) =
[
(−1)j

d
dxt:n

Uj(xt:n)

Uj(θ)

]
n=1

; j = 1, 2, (15)

where Uj(Xt:n) is decreasing function for −∞ ≤ a < b ≤ ∞ with U(b) = 0, range must be truncated by
truncation parameter θ from left for j = 1, t = 1 and is increasing function for −∞ ≤ a < b ≤ ∞ with
U(a) = 0, range must be truncated by truncation parameter θ from right for j = 2, t = n such that it satisfies

Mj(Xt:n) =
d

dXt:n

(
log(Uj(Xt:n))

)
. (16)

3. Applications

As special cases of the theorem 2.1 the following distributions are characterized.

(A) Characterization of negative exponential distribution with pdf

f3(x; θ) =

 e−(x−θ); a < θ < x < b,

0, otherwise,
(17)

The sufficient condition in theorem 2.1 being

g(θ) = E
[
g(X1:n)−

( 1

n

) d

dX1:n
g(X1:n)

]
, (18)
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where g(θ) is non-constant function. From (14) for j = 1, t = 1 M1(X1:n) turns out as −n and hence using
(14) and (16)

M1(X1:n) = d
dX1:n

log(U1(X1:n)) = −n⇒ U1(X1:n) = e−nX1:n ,

which is decreasing function on interval (a, b) with U1(b) = 0 and range must be truncated by truncation
parameter θ from left. Substituting these values in (15), f1(x; θ) reduces to f3(x; θ) defined in (17). Thus
negative exponential distribution is characterized.

(B) Characterization of Pareto distribution with pdf

f4(x; θ) =


cθc

xc+1 ; a < θ < x < b,

0, otherwise,
(19)

The sufficient condition in theorem 2.1 being

g(θ) = E
[
g(X1:n)−

(X1:n

cn

) d

dX1:n
g(X1:n)

]
, (20)

where g(θ) is non-constant function. From (14) for j = 1, t = 1 M1(X1:n) turns out as − cn
X1:n

and hence
using (14) and (16)

M1(X1:n) = d
dX1:n

log(U1(X1:n)) = − cn
X1:n

⇒ U1(X1:n) = − 1
cnXcn1:n

,

which is decreasing function on interval (a, b) with U1(b) = 0 and range must be truncated by truncation
parameter θ from left. Substituting these values in (15), f1(x; θ) reduces to f4(x; θ) defined in (19). Thus
Pareto distribution is characterized.

(C) Characterization of power function distribution with pdf

f5(x; θ) =

 cθ−cxc−1; a < x < θ < b, c > 0

0, otherwise,
(21)

The sufficient condition in theorem 2.1 being

g(θ) = E
[
g(Xn:n) +

(Xn:n

cn

) d

dXn:n
g(Xn:n)

]
, (22)

where g(θ) is non-constant function. From (14) for j = 2, t = n M2(Xn:n) turns out as cn
Xn:n

and hence using
(14) and (16)
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M2(Xn:n) = d
dXn:n

log(U2(Xn:n)) = cn
Xn:n

⇒ U2(Xn:n) =
(
Xcn:n

c

)n
,

which is increasing function on interval (a, b) with U2(a) = 0 and range must be truncated by truncation
parameter θ from right. Substituting these values in (15), f2(x; θ) reduces to f5(x; θ) defined in (21). Thus
power function distribution is characterized.

(D) Characterization of uniform distribution with pdf

f6(x; θ) =


1
θ ; a < x < θ < b, c > 0,

0, otherwise,
(23)

The sufficient condition in theorem 2.1 being

g(θ) = E
[
g(Xn:n) +

(Xn:n

n

) d

dXn:n
g(Xn:n)

]
, (24)

where g(θ) is non-constant function. From (14) for j = 2, t = n M2(Xn:n) turns out as n
Xn:n

and hence using
(14) and (16)

M2(Xn:n) = d
dXn:n

log(U2(Xn:n)) = cn
Xn:n

⇒ U2(Xn:n) = Xn
n:n,

which is increasing function on interval (a, b) with U2(a) = 0 and range must be truncated by truncation
parameter θ from right. Substituting these values in (15), f2(x; θ) reduces to f6(x; θ) defined in (23). Thus
uniform distribution is characterized.

(E) Characterization of generalized uniform distribution with pdf

f7(x; θ) =


α+1
θα+1x

α; a < x < θ < b, α > −1,

0, otherwise,
(25)

The sufficient condition in theorem 2.1 being

g(θ) = E
[
g(Xn:n) +

( Xn:n

n(α+ 1)

) d

dXn:n
g(Xn:n)

]
, (26)

where g(θ) is non-constant function. From (14) for j = 2, t = n M2(Xn:n) turns out as n(α+1)
Xn:n

and hence
using (14) and (16)

M2(Xn:n) = d
dXn:n

log(U2(Xn:n)) = cn
Xn:n

⇒ U2(Xn:n) = Xnn(α+1)

n:n ,
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which is increasing function on interval (a, b) with U2(a) = 0 and range must be truncated by truncation
parameter θ from right. Substituting these values in (15), f2(x; θ) reduces to f7(x; θ) defined in (25). Thus
uniform distribution is characterized.

4. Example

Example 4.1 Let gi(Xn:n) be the uniformly minimum variance unbiased (UMVU) estimator;

gi(X1:n) =


X1:n + 1− 1

n ; for i = 1,

c
c−1 [1− 1

cn ]X1:n, for i = 2,
(27)

gi(Xn:n) =



Xn:n

c+1 [c+ 1
n ]; for i = 3,

Xn:n

2 [1− 1
n ]; for i = 4,

nα+n+1
n(α+2) Xn:n; for i = 5,

(28)

of µ
′

1(θ) = E(X); the first row moment and let the UMVU estimator of pth quantile be

gi(X1:n) =


− log(1− p) +X1:n − 1

n ; for i = 6,

X1:n(1− p)− 1
c [1− 1

cn ], for i = 7,
(29)

gi(Xn:n) =



(
1 + 1

cn

)
p−

1
cXn:n; for i = 3,

(
1 + 1

n

)
pXn:n; for i = 4,

(
1 + 1

n(α+1)

)
p

1
α+1Xn:n; for i = 5,

(30)

and let the UMVU estimator of hazard function be

gi(Xn:n) =



(
1− 1

n

)(
t

Xn:n

)c
; for i = 3,

(
1

Xn:n−t

)(
1− Xn:n

n(Xn:n−t)

)
; for i = 4,

1
n

(
tα

tα−Xαn:nα

)[
tα

tα−Xαn:nα
− n(1 + α)

]
; for i = 5,

(31)
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Using (14) we get Mj(Xt:n), (j = 1, t = 1 and j = 2, t = n)

M1(X1:n) =
d

dX1:n
g(X1:n)

φ(X1:n)− g(X1:n)
=


−n; for i = 1, 6,

− cn
X1:n

, for i = 2, 7,
(32)

which satisfies

M1(X1:n) =
d

dX1:n

[
logU1(X1:n)

]
⇒ (33)

U1(X1:n) =


e−nX1:n ; for i = 1, 6,

1
cnXc1:n

, for i = 2, 7,
(34)

,

and

M2(Xn:n) =
d

dXn:n
g(Xn:n)

φ(Xn:n)− g(Xn:n)



cn
Xn:n

; for i = 3, 8, 11,

n
Xn:n

; for 4, 9, 12,

n(α+1)
Xn:n

; for 5, 10, 13,

(35)

which satisfies

M2(Xn:n) =
d

dXn:n

[
logU2(Xn:n)

]
⇒ (36)

U2(Xn:n) =



(
Xn:n

c

)c
; for i = 3, 8, 11,

Xn
n:n; for 4, 9, 12,

X
n(α+1)
n:n ; for 5, 10, 13,

(37)

Since U1(X1:n) decreasing function on −∞ < a < b < ∞ with U1(b) = 0 and since U2(Xn:n) increasing
function on −∞ < a < b < ∞ with U2(a) = 0 using method described in the remark 2.1 the pd fj(X; θ)



Milind Bhatt / ProbStat Forum, Volume 10, July 2017, Pages 51–62 60

defined in (1) can be characterized through expectation of function of order statistics gi(Xt:n) ; t = 1 or
t = n for i = 1, 2, ..., 13 the UMVU estimator of non constant function such as first row moment, pth quantile
and hazard function by substituting Mj(Xt:n); j = 1 and t = 1 or j = 2 and t = n defined in (14) and using
Uj(Xt:n); (j = 1, t = 1 and j = 2, t = n) as appeared in (16) for (15) given below :

Mj(Xt:n) = Uj(Xt:n) � fj(x, θ)=

j i
d

dXt:n
g(Xt:n)

φi(Xt:n)−gi(Xt:n) Mj(Xt:n) = (−1j)
[ d
dXt:n

Uj(Xt:n)

Uj(θ)

]
n=1

d

(
log(U(Xt:n))

)
dXt:n

1 1, 6 −n e−nX1:n f3(x; θ) =

 e−(x−θ); a < θ < x < b,

0, otherwise,

1 2, 7 − cn
X1:n

1
cnXcn1:n

f4(x; θ) =


cθc

xc+1 ; a < θ < x < b,

0, otherwise,

2 3, 8, 11 cn
Xn:n

(
Xcn:n

c

)n
f5(x; θ) =


cθ−cxc−1; a < x < θ < b, θ = K−1,

K > 0, c > 0,

0, otherwise,

2 4, 9, 12 n
Xn:n

Xn
n:n f6(x; θ) =


1
θ ; a < x < θ < b,

0, otherwise,

2 5, 10, 13 n(α+1)
Xn:n

X
n(α+1)
n:n f7(x; θ) =


α+1
θα+1x

α; a << x < θ < b, α > −1,

0, otherwise,
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