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Abstract.
The addition of hazard functions of Exponential and Generalized half logistic model is developed. The

probability model is considered and an attempt is made to present the distributional properties, estimation
of parameters and testing of hypothesis about the proposed model. The findings are described.

1. Introduction

In reliability studies, combinations of components forming series, parallel, k out of n systems are quite
popular. The survival probabilities of such systems are evaluated either by the system as a whole or through
the survival probabilities of the components that define the system. It is well known that in a series system
of a finite number of components with independent life time random variables, the system reliability is equal
to the product of the component reliabilities. If f(x), F(x), h(x) respectively indicate the failure density,
failure probability, failure rate of a component with life time random variable ’X’, then we know that the
reliability is given by

R(x) = 1− F (x) = e
−
x∫
0

h(x)dx

If a series system has two components with independent but non-identical life patterns explained by two
distinct random variables say X1, X2, with respective failure densities, failure probabilities, failure rates as
f1(x), f2(x); F1(x), F2(x); h1(x), h2(x) then the system reliability is given by

R(x) = e
−
x∫
0

[h1(x)+h2(x)]dx
. (1)

From the above expression we get the failure density and failure rate of the series system whose reliability
is given by (1) . Such models are already studied in the past with different choices of h1(x) and h2(x). One
such situation is the popular linear failure rate distribution [LFRD]. In this model h1(x) is taken a constant
failure rate (CFR) model. h2(x) is taken as an increasing failure rate (IFR) model with specific choices of
exponential for h1(x) and Weibull with shape 2 for h2(x). The failure density, the cumulative distribution
function, the reliability and the failure rate of LFRD model are given by
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f(x;α, β) = (α+ βx)e−αx−
β
2 x

2

. (2)

F (x;α, β) = 1− e−αx−
β
2 x

2

, x > 0, α > 0, β > 0. (3)

F̄ (x;α, β) = e−αx−
β
2 x

2

. (4)

h(x;α, β) = α+ βx. (5)

A hazard rate given in (5) is in the form of a straight line equation justifying the name ”Linear Failure
Rate” for this distribution. A number of researchers made an extensive study on LFRD model. Some
recent works in this regard are Bain(1974) (8), Balakrishnan and Malik (1986) (9), Ananda Sen and
Bhattacharya(1995) (7), Mohie El-Din et al (1997) (14), Ghitany and Kotz(2007) (13), El-Baset A. Ah-
mad(2008) (4), Khedhairi(2008) (3), Sarhan and Zaindin(2009) (5), Sarhan and Kundu(2009) (6), Mahmoud
and Al-Nagar(2009) (10), Mazen and Zaindin(2010) (12), Kantam and Priya(2011) (15), Srinivasa Rao et al
(2013) (11) have worked out an additive life testing model combining CFR and DFR models. The rest of the
paper is organised as follows: The Distributional properties of our proposed model are given in Section 2.
The ML Estimation is discussed in Section 3. Discrimination of our model from exponential using likelihood
ratio criterion is given in Section 4. Summary and Conclusions are given in Section 5.

2. Distributional Properties

We consider exponential distribution (constant failure rate model) and generalized half logistic distribu-
tion (increasing failure rate model). The probability density function, cumulative distribution function and
hazard function of exponential distribution are given by

f1(x) = λe−λx; x ≥ 0, λ > 0. (6)

F1(x) = 1− e−λx; x ≥ 0, λ > 0. (7)

h1(x) = λ. (8)

The probability density function, cumulative distribution function and hazard function of generalized half
logistic distribution are given by

f2(x) =
θ(2e−x)

(1 + e−x))θ+1
; x > 0, θ > 0. (9)

F2(x) = 1−
(

2e−x

1 + e−x

)θ
; x > 0, θ > 0. (10)
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h2(x) =
θ

1 + e−x
; x > 0, θ > 0. (11)

The reliability of the series system with two components as exponential distribution and generalized half
logistic distribution are using equation (1.1) is

R(x) = e−λx(ex − 1)−θ; x > 0, θ > 0, λ > 0. (12)

We consider the failure density corresponding to (2.7) as our exponential generalized half logistic additive
failure rate (EGHLAFRM).

The probability density function(pdf)-g(x), the cumulative distribution function(cdf)-G(x), failure rate-
h(x) of EGHLAFRM are respectively given by

g(x) = e−λx(ex − 1)−θ
(
θex(ex − 1)−1 + λ

)
; x > 0, θ > 0, λ > 0. (13)

G(x) = 1− e−λx(ex − 1)−θ; x > 0, θ > 0, λ > 0. (14)

h(x) = λ+ θex(ex − 1)−1; x > 0, θ > 0, λ > 0. (15)

The shapes of the hazard curves are shown in the following graph for various values of (λ, θ) =
(1.5,2),(2.0,3),(2.5,4),(3.0,5),(3.5,6),(4.0,7). The hazard function appears to be a decreasing function.
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3. Maximum Likelihood Estimation

Let x1, x2, .., xn be a random sample of size ’n’ drawn from EGHLAFRM with pdf g(x;λ, θ) then the
likelihood function is given by

L =

n∏
i=1

g(xi;λ, θ). (16)

L =

n∏
i=1

e−λx(ex − 1)−θ
(
θex(ex − 1)−1 + λ

)
. (17)

logL = −(λ− 1)

n∑
i=1

xi + nlogθ −
n∑
i=1

log(exi − 1)− 2θ

n∑
i=1

log(exi − 1) + nlogλ− λ
n∑
i=1

xi. (18)

The MLEs of λ, θ can be obtained by solving the following likelihood equations

∂logL

∂λ
= 0⇒ −2

n∑
i=1

xi +
n

λ
= 0⇒= λ̂ =

n

2
∑n
i=1 xi

. (19)

and

∂logL

∂θ
= 0⇒ n

θ
− 2

n∑
i=1

log(exi − 1) = 0⇒ θ̂ =
n

2
∑n
i=1 log(exi − 1)

(20)

The asymptotic variance, covariance of the estimates of the parameters are obtained using the following
elements of the information matrix:

I11 = −E
(
∂2logL

∂λ2

)
= −E

(
−n
λ2

)
=

n

λ2
. (21)

I12 = I21 = −E
(
∂2logL

∂λ∂θ

)
= 0. (22)

I22 = −E
(
∂2logL

∂θ2

)
= −E

(
−n
θ2

)
=

n

θ2
. (23)

The estimated asymptotic dispersion matrix of the MLEs is given by the inverse of

[
Î11 Î12
Î21 Î22

]
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4. Discrimination between EGHLAFRM and Exponential model

We know that the exponential distribution is having a number of preferable properties to be handled
for problems of statistical inference. We therefore, are interested in assessing whether exponential distribu-
tion is an alternative to our model. In other words given a sample we are interested in studying whether
the sample discriminates between our model from that of exponential. Let us designate our distribution
EGHLAFRM as null population say P0 and exponential distribution as alternative population say P1. We
propose a null hypothesis H0 : A given sample belongs to the population P0 against an alternative hypoth-
esis H1 : The sample belongs to population P1.
Consider a sample from P0. Let L1, L0 respectively stand for the likelihood functions of the sample with
population P1 and P0. Both L1 and L0 contain the respective parameters of the population. The considered
sample is used to get the parameters of P1, P0. The value of L1

L0
with the estimated parameters is computed.

If H0 is true, L1

L0
must be small, therefore for accepting H0 with a given degree of confidence, L1

L0
is compared

with a critical value with the help of the percentiles in the sampling distribution L1

L0
. But the sampling

distribution of L1

L0
is not analytical , we therefore resorted to the empirical sampling distribution through

simulation. We have generated random samples of size 5(1)10,15,20,25,30 from the population P0 with
various parameter combinations (λ = 1; θ = 1, 2, 3, 4)and got the values of L1, L0 along with the estimates
of respective parameters for each sample. The percentiles of L1

L0
at various probabilities are calculated and

are given in Table 4.1.
In testing of hypothesis we know that the power of a test statistic is the complementary probability of
accepting a false hypothesis at a given level of significance. Let us conventionally fix 5% level of significance,
so that the percentiles in Table 4.1 under the column 0.05 shall become the critical values. We generate
random sample of sizes 5(1)10,15,20,25,30 from the population P1 namely exponential. At this sample we
find the estimates of the parameters of P1 and P0 using the respective probability models. Accordingly we
got the estimates of L1 , L0 for the sample from P1. Over repeated simulation runs we got the proportion
of values L1

L0
that fall below the respective critical values of Table 4.1. These proportions would give the

values of probability of type II error namely β so that 1− β would be the power. Various power values are
given in Table 4.2. We can observe that exponential can be a reasonable alternative to our model in small
samples.
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Table 4.1: Percentiles of L1

L0
for various values of λ and θ

λ = 1, θ = 1
n 0.99865 0.995 0.99 0.975 0.95 0.05
5 7.0417 1.9103 1.0437 0.2871 0.2865 0.2859
6 6.2854 1.8432 1.0371 0.2241 0.2234 0.2225
7 4.8680 1.9596 0.9692 0.1750 0.1744 0.1738
8 5.4677 2.4385 0.9597 0.1366 0.1362 0.1357
9 5.5794 2.0101 0.9762 0.1066 0.1063 0.1057
10 4.6914 2.0777 0.9877 0.0834 0.0830 0.0826
15 8.5481 1.1929 0.6103 0.0248 0.0243 0.0240
20 3.5754 0.7281 0.3069 0.0075 0.0073 0.0070
25 1.8872 0.5092 0.2195 0.0024 0.0022 0.0021
30 1.2026 0.4309 0.1349 0.0008 0.0007 0.0006

λ = 1, θ = 2
5 0.9009 0.5886 0.4805 0.2924 0.2921 0.2917
6 0.7526 0.5300 0.4122 0.2289 0.2284 0.2280
7 0.6583 0.4537 0.3396 0.1791 0.1788 0.1785
8 0.5346 0.4047 0.2869 0.1403 0.1400 0.1397
9 0.4415 0.3282 0.2492 0.1099 0.1096 0.1092
10 0.3999 0.2858 0.2131 0.0861 0.0858 0.0856
15 0.2190 0.1055 0.0808 0.0256 0.0253 0.0252
20 0.0766 0.0400 0.0297 0.0077 0.0076 0.0074
25 0.0267 0.0159 0.0115 0.0023 0.0023 0.0022
30 0.0107 0.0070 0.0045 0.0007 0.0007 0.0007

λ = 1, θ = 3
5 0.5198 0.4246 0.3840 0.2949 0.2947 0.2944
6 0.4245 0.3547 0.3117 0.2313 0.2310 0.2306
7 0.3494 0.2924 0.2522 0.1813 0.1811 0.1808
8 0.2841 0.2441 0.2070 0.1422 0.1419 0.1417
9 0.2288 0.1951 0.1692 0.1114 0.1113 0.1110
10 0.1858 0.1601 0.1386 0.0874 0.0873 0.0871
15 0.0766 0.0532 0.0476 0.0261 0.0259 0.0258
20 0.0246 0.0180 0.0157 0.0078 0.0077 0.0077
25 0.0076 0.0062 0.0053 0.0024 0.0023 0.0023
30 0.0027 0.0023 0.0018 0.0007 0.0007 0.0007

table contd....
λ = 1, θ = 4

5 0.4178 0.3734 0.3501 0.2966 0.2964 0.2962
6 0.3360 0.3022 0.2801 0.2327 0.2325 0.2321
7 0.2715 0.2436 0.2238 0.1826 0.1824 0.1823
8 0.2169 0.1996 0.1804 0.1433 0.1432 0.1430
9 0.1746 0.1589 0.1456 0.1125 0.1123 0.1122
10 0.1387 0.1273 0.1175 0.0883 0.0882 0.0880
15 0.0504 0.0405 0.0383 0.0264 0.0263 0.0262
20 0.0156 0.0131 0.0122 0.0079 0.0079 0.0078
25 0.0048 0.0043 0.0039 0.0024 0.0024 0.0023
30 0.0016 0.0014 0.0013 0.0007 0.0007 0.0007

Table 4.2: Power of Likelihood Ratio criterion
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λ = 1, θ = 1
n 0.025 0.05
5 0.969 0.954
6 0.967 0.934
7 0.971 0.951
8 0.987 0.964
9 0.975 0.963
10 0.981 0.976
15 0.989 0.984
20 0.988 0.985
25 0.994 0.992
30 0.997 0.996

λ = 1, θ = 2
5 1.000 1.000
6 1.000 1.000
7 1.000 1.000
8 1.000 1.000
9 1.000 1.000
10 1.000 1.000
15 1.000 1.000
20 1.000 1.000
25 1.000 1.000
30 1.000 1.000

table contd....
λ = 1, θ = 3

5 0.999 0.999
6 1.000 1.000
7 1.000 1.000
8 1.000 1.000
9 1.000 1.000
10 1.000 1.000
15 1.000 1.000
20 1.000 1.000
25 1.000 1.000
30 1.000 1.000

λ = 1, θ = 4
5 1.000 1.000
6 1.000 1.000
7 1.000 1.000
8 1.000 1.000
9 1.000 1.000
10 1.000 1.000
15 1.000 1.000
20 1.000 1.000
25 1.000 1.000
30 1.000 1.000

5. Summary & Conclusions

A combination of Exponential model and Generalized half logistic model is developed on lines of the
well known linear failure rate model. Estimating equations by ML method are also derived. Its validity as
a specified model in the presence of a simpler Exponential model as an alternative is established using a
likelihood ratio criterion. The proposed model stood robust against Exponential.
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