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Abstract. Generalized Exponential (GE) distribution is a family of distribution obtained by exponen-
tiating the cumulative distribution function (cdf) of the exponential distribution. This paper provides
partial review on GE distribution. In this paper, we derive likelihood ratio, Wald and Score test for
testing exponential versus GE distribution. Asymptotic null distribution of all the test is central chi-
square with 1 degree of freedom. Under the alternative hypothesis, all the test statistics are distributed
as non-central chi-square with 1 degree of freedom and the same non-centrality parameter. The finite
(small) sample performance of the tests is compared using simulations for the censored and uncensored
observations. The results indicate that Wald test and the variance of this maintains type-I error rate and
has higher power compared to the other test. A real life data is also analyzed to illustrate the use of the
tests.

1. Introduction

In the past, several researchers have developed methods to generalize the known distributions. The
generalized family has one additional parameter and can accommodate a wide variety of situations. One
such method is to exponentiate the cdf of a continuous random variable by a positive parameter. This
approach dates back to Gompertz (1825), who obtained a generalized distribution by exponentiating the
cdf of the extreme value distribution to graduate mortality tables. In a series of papers Verhulst (1838,
1845 and 1847) obtained new family of distribution by exponentiating the cdf of logistic distribution. When
the exponentiating parameter is an integer, the family of distribution is referred as Neyman non-parametric
family. For details see Al-Hussaini and Ahsanullah (2015).

GE distribution is a two parameter distribution which was introduced by Gupta and Kundu (1999). It
can accommodate both increasing and decreasing failure rates and is a competitor for the two parameter
Weibull distribution and Gamma distribution. Unfortunately, Gupta and Kundu (1999) do not acknowledge
the original works of Gompertz (1825) and Verhulst (1838, 1845 and 1847) nor they refer to Neyman family.
This paper provides partial review on GE distribution. Some technical details regarding GE distribution is
presented in section 2.

Gupta and Kundu (2003a) discuss the closeness of the Weibull and the GE distribution. They observe
that the behaviour of the hazard function and the tail behaviour of the Gamma distribution and the GE

2010 Mathematics Subject Classification. 62E10.
Keywords. Exponential distribution, Generalized Exponential distribution, Hazard rate, Likelihood ratio, Wald and Score

tests, Power of the test.
Received: 26 October 2016; Revised: 04 June 2017, Accepted: 30 July 2017

Email addresses: shwetha92kumari@gmail.com (Shwetha Kumari), arunaraomu@gmail.com (K. Aruna Rao)



Shwetha and Rao / ProbStat Forum, Volume 10, July 2017, Pages 71–84 72

distribution are quite similar in nature. Further they observe that corresponding to the pair of the parameters
of the cdf of the Gamma distribution, there exists a GE distribution whose cdf is approximately equal to
the former. In another paper, Gupta and Kundu (2003b) discuss how to discriminate between Weibull and
GE distribution. In some ranges of the hazard function, the hazard function of the two distributions is not
distinguishable from each other. Lognormal distribution has bump shape hazard function and thus cannot
be directly compared with the hazard function of the GE distribution. In some ranges of the hazard function,
the behaviour of the hazard function of lognormal distribution can be compared with the behaviour of the
hazard function of GE distribution; that is when the hazard function is only increasing or only decreasing.
This is investigated in detail by Kundu et al. (2005). The estimation of the parameters of the GE distribution
was discussed by several authors. Gupta and Kundu (2001) compare the performance of the estimators based
on maximum likelihood, method of moments, method of percentiles, least square estimation, weighted least
square estimation and estimators based on the linear combination of order statistics. From their simulation
study, they recommend percentile estimator for small sample sizes and maximum likelihood estimator (MLE)
for moderate to large sample sizes. Best linear unbiased estimators of the location and scale parameters
based on order statistics of the GE distribution were derived by Raqab and Ahsanullah (2001). However
the limitation is that they can be used only for sample sizes upto ten. In extension of the previous paper,
Raqab (2002) has obtained best linear unbiased estimator of the three parameter GE distribution using
record values. Bayes and empirical Bayes estimators for the unknown parameter of the GE distribution was
derived by Jaheen (2004) when the loss function is squared error or LINEX. Raqab and Madi (2005) derive
Bayes estimator for the parameters and reliability function of the GE distribution under type-II censoring.
They used informative priors. Extension of this paper was undertaken by Kundu and Gupta (2008). They
consider Gamma priors and compare the performance of the Bayes estimator with the MLE using non-
informative priors. The estimation of the parameter of GE distribution under various censoring schemes
was considered by many researchers. Asgharzadeh (2009) derived approximate MLE of the scale parameter
of the GE distribution under progressive type-II censoring scheme. The results of this paper were generalized
by Pradhan and Kundu (2009), where they obtain MLEs of the parameters using EM algorithm. They also
provide optimal progressive censoring plans. In another paper, Kundu and Pradhan (2009a) supplement this
work to the case of hybrid censoring. The results were augmented in Kundu and Pradhan (2009b), where
they use Bayes procedure for the estimation of the parameters and they also provide sub-optimal censoring
plans.

The previous papers confined to progressive type-II censoring and Chen and Lio (2010) obtained max-
imum likelihood and moment estimators of the parameters of the GE distribution under the progressive
type-I interval censored scheme. Nasiri and Pazira (2010) derive the Bayes and the MLEs of the parameters
of the GE distribution when there are k outliers. They compare the performance of these two estimators
using simulation. The paper by Yarmohammadi and Pazira (2010) supplements the results of some of
the previous papers, where they consider Bayes and non-Bayes estimation of the parameters under type-II
censoring. In addition to these papers, the researchers concentrated on the estimation of the reliability
parameters namely P (Y < X) under stress-strength schemes. The papers in this area are due to Kundu
and Gupta (2005), Baklizi (2008), where they use lower record values for the estimation and Raqab et al.
(2008) for the three parameter GE distribution. The other salient papers relating to GE distribution are
due to Aslam and Shahebaz (2007), Kundu and Gupta (2007), Sultan (2007), Gupta and Kundu (2007),
Kundu and Gupta (2009), Gadde (2009) and Aslam et al. (2010), where they provide overview of the results
concerning GE distribution till that time while Madi and Raqab (2007) use GE distribution for the analysis
of rainfall data.

Concomitants of the GE distributions are discussed in several research papers. Tahmasebi and Jafari
(2015) discuss the concomitant of order statistics and record values from Morgenstern type bivariate GE
distribution. In an extension to this paper Tahmasebi et al. (2015) derive product moment of Morgenstern
type bivariate GE distribution. The other paper in this direction is due to Barakat et al. (2016), who study
the properties of ordered statistics from Huang-Kotz FGM type bivariate GE distribution.

Cox (1977) suggests that data analysis be carried out using generalized distribution and also insists the
need for identifying the sub-model that fit well to the data. This would help a scientist to understand the
phenomena under consideration. Whenever two or three parameter GE distribution is used for the data
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analysis, it is important to check whether the underlined distribution is exponential or GE distribution. This
work has not been attempted in the past and we derive likelihood ratio, Wald and Score test for testing the
hypothesis that the underlined distribution is exponential against the alternative that it is GE distribution.
The case of complete sample and randomly censored observations are considered. The performance of the
tests in terms of estimated type-I error rate and power of the test are compared using simulation. The
results indicate that Wald test or its modified version performs well.

The paper unfolds in the following sections. Section 2 presents preliminaries and the test statistics,
simulation experiment is presented in section 3. The results are presented for the uncensored and censored
cases in section 4. Section 5 presents the use of the tests for real data sets and the paper concludes in section
6.

2. Preliminaries and the Test Statistics

2.1. Preliminaries

Gupta and Kundu (1999) obtained two parameter GE distribution by exponentiating the cdf of 1 pa-
rameter exponential distribution. The cdf of the two parameter GE distribution is given by

F (x; θ, λ) = (1− e−λx)θ ; x > 0, θ > 0, λ > 0, (1)

where θ is shape parameter and λ is the scale parameter.
Therefore the probability density function (pdf) of the two parameter GE is given by

f(x; θ, λ) = θλ(1− e−λx)θ−1e−λx ; x > 0, θ > 0, λ > 0. (2)

The hazard function of the distribution is

h(x; θ, λ) =
θλ(1− e−λx)θ−1e−λx

1− (1− e−λx)θ
. (3)

2.2. Maximum Likelihood Equations for the Uncensored Case

Given a random sample of size n from the GE distribution, the likelihood is given by

L(θ, λ;x) =

n∏
i=1

(θλ(1− e−λxi)θ−1e−λxi),

where x = (x1, x2, · · · , xn). The Maximum Likelihood (ML) equations for the estimation of the parameters
are obtained by equating the Score vector to zero. The Score vector is given below

(
δlogL
δθ

δlogL
δλ

)
=

(
n
θ +

∑n
i=1 log(1− e−λxi)

n
λ + (θ − 1)

∑n
i=1

xie
−λxi

(1−e−λxi ) −
∑n
i=1 xi

)
. (4)

The components of the Hessian matrix are given by

δ2logL

δθ2
= − n

θ2
, (5)

δ2logL

δλ2
=
−n
λ2
− (θ − 1)

n∑
i=1

x2i e
−λxi

(1− e−λxi)2
, (6)
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δ2logL

δλδθ
=

n∑
i=1

xie
−λxi

(1− e−λxi)
. (7)

The observed Fisher information matrix is given by

I(θ, λ) =

(
− δ

2logL
δθ2 − δ

2logL
δθδλ

− δ
2logL
δλδθ − δ

2logL
δλ2

)
.

Under regularity condition,
√
n((θ̂−θ), (λ̂−λ)) follows asymptotic normal distribution with mean vector

zero and covariance matrix given by inverse of the Fisher information matrix. For the regularity condition,
we refer to Lehmann and Casella(1998).

2.3. Maximum Likelihood Equations for the Censored Case

Let T denote the event time which follows GE distribution and C denotes the censoring time. Under
random censoring, for a sample of size n, let xi = min(ti, ci), i = 1, · · · , n. Further, let δ denote the
indicator variable and

δi =

{
1 if the observation is uncensored
0 if the observation is censored

The likelihood is given by

L(θ, λ;x, δ) =

n∏
i=1

[θλ(1− e−λxi)θ−1.e−λxi ]δi [1− (1− e−λxi)θ](1−δi),

where (x, δ) = ((x1, δ1), · · · , (xn, δn)).
The Score vector is given by

(
δlogL
δθ

δlogL
δλ

)
=



∑n
i=1 δi
θ +

∑n
i=1 δilog(1− e−λxi)−∑n

i=1
(1−δi)(1−e−λxi )θlog(1−e−λxi )

(1−(1−e−λxi )θ)

∑n
i=1 δi
λ + (θ − 1)

∑n
i=1

δixie
−λxi

(1−e−λxi ) −
∑n
i=1 δixi−

θ
∑n
i=1

(1−δi)xie−λxi (1−e−λxi )θ−1

(1−(1−e−λxi )θ)

 . (8)

The ML equation is given by equating the Score vector to the null vector.

δ2logL

δθ2
= −

∑n
i=1 δi
θ2

−
n∑
i=1

(1− δi)[log(1− e−λxi)]2(1− e−λxi)θ[
(1− (1− e−λxi)θ) + (1− e−λxi)θ

(1− (1− e−λxi)θ)2

]
, (9)

δ2logL

δλ2
= −

∑n
i=1 δi
λ2

− (θ − 1)

n∑
i=1

δix
2
i e

−λxi

(1− e−λxi)2
− θ

n∑
i=1

(1− δi)x2i e−λxi[
(1− (1− e−λxi)θ)(θ − 1)e−λxi(1− e−λxi)θ−2

(1− (1− e−λxi)θ)2

− (1− (1− e−λxi)θ)(1− e−λxi)θ−1 + θeλxi((1− e−λxi)θ−1)2

(1− (1− e−λxi)θ)2

]
, (10)
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δ2logL

δλδθ
=

n∑
i=1

δixie
−λxi

(1− e−λxi)
−

n∑
i=1

(1− δi)xie−λxi(1− e−λxi)θ−1

[
θlog(1− e−λxi)(1− (1− e−λxi)θ)

(1− (1− e−λxi)θ)2

+
(1− (1− e−λxi)θ) + θ(1− e−λxi)θlog(1− e−λxi)

(1− (1− e−λxi)θ)2

]
. (11)

The observed Fisher information matrix corresponds to negative of the Hessian matrix.

2.4. Test Statistic

In the sequel, we present the likelihood ratio, Wald and Score test for testing H0 : θ = 1 v/s H1 : θ 6= 1.
We do not distinguish between censored and uncensored cases and the context would make it clear.

2.4.1. Likelihood Ratio Test (LRT)

Let
ˆ̂
λ denote the restricted MLE of λ at θ0 = 1 and (θ̂, λ̂ ) denote the unrestricted MLE of (θ, λ). The

LRT test statistic is given by

−2logλn = 2[logL(θ̂, λ̂;x)− logL(θ0,
ˆ̂
λ;x)]. (12)

Under null hypothesis, −2logλn is asymptotically distributed as central chi-square with 1 degree of freedom.
We reject null hypothesis if −2logλn ≥ χ2

α(1), where χ2
α(1) denotes the upper αth percentile value of central

chi-square distribution with 1 degree of freedom.

2.4.2. Wald Test

Using the asymptotic normality of the MLEs, Wald proposed a test which is equivalent to the LRT.
In the original proposition, Wald evaluated the Fisher information matrix using the unrestricted MLEs.
Cox (1974) observed that the Fisher information can also be evaluated using the null hypothesis and the
restricted MLE of other nuisance parameters. In this paper, we have used both the forms of the Wald test
and called it as Wald test1 and Wald test2.

The test statistic for Wald test1 (W1) is given by

W1 =
θ̂ − 1

SE(θ̂)
, (13)

Where SE(θ̂) is obtained by the inverse of the Fisher information matrix. We reject the null hypothesis if
W 2

1 > χ2
α(1), where χ2

α(1) refers to the upper αth percentile value of the central chi-square distribution with
1 degree of freedom. The test statistic for Wald test2 (W2) has the similar format as W1 and is not given.
Under null hypothesis, W 2

2 is also asymptotically distributed as central chi-square with 1 degree of freedom.

2.4.3. Score Test

The Score test statistic is given by

We =

(
δlogL(θ0,

ˆ̂
λ)

δθ0
,
δlogL(θ0,

ˆ̂
λ)

δ
ˆ̂
λ

)
I−1(θ0,

ˆ̂
λ)

(
δlogL(θ0,

ˆ̂
λ)

δθ0
,
δlogL(θ0,

ˆ̂
λ)

δ
ˆ̂
λ

)′
. (14)

Under H0, We is asymptotically distributed as central chi-square with 1 degree of freedom. Reject the null
hypothesis if We > χ2

α(1). For details regarding likelihood ratio, Wald and Score tests, refer to Rao (1973)
and Cox and Hinkley (1974). For the use of modified Wald test, see Vasudeva and Rao (2009), Sumathi and
Rao (2010), Sumathi and Rao (2011), Sumathi and Rao (2013) and Sumathi and Rao (2014).
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3. Simulation Experiment

3.1. Uncensored Case

We have compared the performance of the four tests using simulation. Observations of size n = 20, 40,
60, 80 and 100 are generated from exponential distribution with parameter λ = 0.33. This corresponds to a
life time of 3 years, which is commonly used in medical follow-up studies; then we have computed the test
statistics corresponding to LRT, Wald test1, Wald test2 and Score test. Using 10000 simulations, we have
estimated the proportion of times the null hypothesis is rejected, which corresponds to estimated type-I
error rate. The level of significance is specified as 0.05. We also noted the lower and upper (α2 )th percentile
values of the simulated distribution of the test statistic. This is helpful to carryout the power of the test, as
the power comparison is valid when estimated type-I error rates are equal for all the tests.

For computing the power of the test, we generated observations from GE distribution with different
shape parameter θ and fixed scale parameter λ = 0.33, then computed the test statistics corresponding to
LRT, Wald test1, Wald test2 and Score test. The power of the test is the proportion of times the null
hypothesis is rejected out of 10000 simulations.

3.2. Censored Case

To generate censored observations from the GE distribution, we have assumed that the censoring variable
C follows discrete uniform distribution. Although continuous uniform distribution is commonly taken as
the distribution of the censoring variable, we have used discrete uniform distribution for simplicity. This
corresponds to a scenario where patients are lost to follow in medical follow-up studies.

We have considered two scenarios namely 10% censoring and 20% censoring. For any sample size n, the
number of uniform variable generated corresponds to 0.1 × n and 0.2 × n for the 10% and 20% censoring
respectively. The observations from the GE distribution having these serial number are treated as censored
observations. The rest of the computation is similar to the uncensored case.

4. Result and Discussion

4.1. Estimated Type-I Error Rate for the Uncensored Case

If the estimated values of type-I error rate lie within the range of (0.045, 0.055), then the test maintains
the level of significance 0.05, i.e., 10% error. A similar criterion was also used by several researchers. For
example, refer to DCunha and Rao (2014a,b). Table 1 presents the estimated type-I error rate for the
uncensored case.

Table 1: Estimated Type-I error rate for various tests when α = 0.05 and for various sample sizes for the uncensored case.

n LRT Wald test1 Wald test2 Score
20 0.0566 0.0318 0.1303 0.0397
40 0.0532 0.0419 0.0986 0.0446
60 0.0524 0.0447 0.0825 0.0475
80 0.0542 0.0472 0.0739 0.0488
100 0.0497 0.0455 0.0665 0.0470

From the Table 1, we can say that in LRT, the test maintains level of significance for all sample sizes.
Wald test1 maintains level of significance for the samples of size ≥ 60. Wald test2 does not maintain level
of significance in all the sample sizes. Score test maintains level of significance for the samples of size ≥ 40.

To check the adequacy of the chi-square distribution to the null distribution of the test statistic, the
histogram of the simulated null distribution of the test statistic along with the pdf of the chi-square distri-
bution with 1 degree of freedom is plotted in Figures 1 - 6 for sample sizes n = 20, 60, 100; to save space the
Figures are not presented for other sample sizes.
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Figure 1: Histogram for the LRT and Wald test1 when n=20.
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Figure 2: Histogram for the Wald test2 and Score when n=20.
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Figure 3: Histogram for the LRT and Wald test1 when n=60.
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Figure 4: Histogram for the Wald test2 and Score when n=60.
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Figure 5: Histogram for the LRT and Wald test1 when n=100.
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Figure 6: Histogram for the Wald test2 and Score when n=100.

Histogram of Wald2

W

D
e

n
si

ty

0 10 20 30 40 50 60

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Histogram of Score

S

D
e

n
si

ty

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7



Shwetha and Rao / ProbStat Forum, Volume 10, July 2017, Pages 71–84 79

For small sample sizes, the approximation is more accurate for the LRT compared to other tests. The
approximation differs in the middle region and as the sample size increases the chi-square approximation is
accurate to the null distribution for all the test statistics in the range of the test statistic.

4.2. Power of the Test for the Uncensored Case

The estimated power curves of all the tests is presented in Figure 7 for sample size 60.

Figure 7: Power curves for different tests when n=60 for uncensored case.
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We have used the estimated upper 5th percentile value of the simulated distribution of the test statistics
as the critical value for computing the power.

From the Figure 7, we can say that the rate of convergence of power function to the value 1 is faster for
Wald test2 compared to other tests. For the right local alternative, the power of the Wald test2 is higher than
the other tests, which is followed by LRT, Score and Wald test1 respectively. For the left local alternative,
the power of the Wald test1 is higher compared to other tests. However the difference is marginal when
compared to the power of the Score test. The power of the Wald test2 is drastically different from other
tests. The power of the test could not be computed for smaller values of θ as difficulty was encountered in
the computation.

4.3. Estimated Type-I Error Rate for the Censored Case

For the Monte Carlo comparison, we have restricted to 10% and 20% random censoring, which cor-
responds to mild and moderate censoring. Censoring distribution is discrete uniform. This simulation
corresponds to the case of persons lost to follow-up in medical studies.

Estimated type-I error rate is presented in Table 2 across the sample sizes.

Table 2: Estimated Type-I error rate for various tests when α = 0.05. (10% and 20%censoring).

n 10% 20%
LRT Wald test1 Wald test2 Score LRT Wald test1 Wald test2 Score

20 0.0614 0.0288 0.1439 0.0395 0.0898 0.0315 0.1477 0.0796
40 0.0728 0.0417 0.1021 0.0722 0.1260 0.0352 0.1085 0.1541
60 0.0779 0.0446 0.0871 0.0901 0.2022 0.0415 0.0879 0.2193
80 0.0862 0.0484 0.0806 0.1020 0.3522 0.0468 0.0873 0.2915
100 0.0867 0.0446 0.0742 0.1183 0.6880 0.0456 0.0803 0.3450

From the Table 2, we say that for 10% censoring, LRT, Wald test2 and Score test do not maintain level
of significance for all the sample sizes, while Wald test1 maintain level of significance when the sample size
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≥ 60. For 20% censoring, the conclusion is the same except that Wald test1 maintain level of significance
when the sample size ≥ 80.

Histogram of estimated null distribution of the statistic indicates that the chi-square approximation to
the null distribution is not accurate for all the sample sizes for the LRT, Wald test2 and Score test for 10%
as well as 20% censoring. To save the space, figures are not shown here.

4.4. Power of the Test for the Censored Case

Figure 8: Power curves for different tests when n=60 for 10% censored case.
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Figure 9: Power curves for different tests when n=60 for 20% censored case.
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Figures 8 and 9 presents the estimated power curves for the four tests for the sample size n = 60. As in
the uncensored case, the estimated critical values are used for the power computation. As in the uncensored
case, Wald test1 emerges as a best test for left local alternative for 10% as well as 20% censoring. For the
right local alternative, the Wald test2 emerges as the best test for 10% censoring as in the uncensored case.
While Score test emerges as the best test for 20% censoring. For left alternatives, the power of each of the
test decreases as the degree of censoring increases. For the right alternatives, the similar conclusion emerges
for the LRT, Wald test1 and Wald test2, while for the Score test, the power of the test increases as the
degree of censoring increases. Generally, it is expected that there is loss in the power of the test as the



Shwetha and Rao / ProbStat Forum, Volume 10, July 2017, Pages 71–84 81

degree of censoring increases. The reasoning for the behaviour of the power function for the Score test is
not clear at this juncture.

5. Example (Leukemia Free Survival Times)

To illustrate the use of the various tests developed in previous sections, we have considered a data set
on Leukemia free survival times (in months), for the 50 allogeneic transplant patients available in the text
book authored by Klein and Moeschberger (2003).

Table 3: Leukemia free survival times.

The leukemia-free survival times for the 50 allo transplant patients were
0.030, 0.493, 0.855, 1.184, 1.283, 1.480, 1.776, 2.138, 2.500, 2.763, 2.993, 3.224,

3.421, 4.178, 4.441+, 5.691, 5.855+, 6.941+, 6.941, 7.993+, 8.882, 8.882, 9.145+,
11.480, 11.513, 12.105+, 12.796, 12.993+, 13.849+, 16.612+, 17.138+, 20.066, 20.329+,

22.368+, 26.776+, 28.717+, 28.717+, 32.928+, 33.783+, 34.211+, 34.770+, 39.539+,
41.118+, 45.033+, 46.053+, 46.941+, 48.289+, 57.401+, 58.322+, 60.625+.

There are 28 censored patients which corresponds to 56% censoring. The Q-Q plot for uncensored
observation is shown in Figure 10, which shows that the data is well described by the GE distribution.

Figure 10: Q-Q plot of GE distribution for Leukemia free survival times for uncensored observations.
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Exponential distribution is a member of GE family of distribution, and the null hypothesis of interest is
whether the data is a sample from the exponential distribution. i.e., H0 : θ = 1.

The estimates of the restricted and unrestricted MLEs for the data, including the censored observation,
is given in the Table 4

Table 4: Maximum Likelihood Estimates.

Types of data Unrestricted Restricted
θ λ λ

Uncensored 0.960825 0.1871362 0.192024
Uncensored+censored 0.4557904 0.00683785 0.05390481

The data is analyzed in two stages. In first stage, only the uncensored observations are taken, while in
the second stage, all the observations are considered for carrying out the test.
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The values of the test statistics along with the p-value are reported in Table 5.

Table 5: The values of the test statistics along with the p-value.

Tests Uncensored observation uncensored + censored observations
value of the statistic p-value value of the statistic p-value

LRT 0.02110712 0.8844875 34.7124 3.821894 × 10−09

Wald test1 0.02180514 0.8826067 28.22367 1.080748 × 10−07

Wald test2 0.01977727 0.8881609 6.567576 0.01038533

Score test 0.02181101 0.882591 0.02307798 0.8792545

For the uncensored case, the LRT maintains type-I error rate for all the sample sizes, and therefore
the conclusion is to accept the null hypothesis at 5% level of significance. Even though other tests do not
maintain level of significance, the same conclusion is arrived at, when we use these tests. When we considered
the uncensored as well as censored cases, the p-values for all the tests are less than 0.05 except for the Score
test. Therefore, we have to reject the null hypothesis based on the evidence provided by the majority of
the tests. This is an example where heavy censoring leads to a different conclusion than obtained by using
uncensored observations.

6. Conclusion

In this paper, we have investigated the finite sample performance of the likelihood ratio, Wald and Score
tests. The Monte Carlo results indicate that, LRT maintains level of significance even for a small sample of
size n = 20 in uncensored case, but it does not maintain level of significance in censored case. Wald test1
maintains level of significance for sample size n ≥ 60 in uncensored case as well as in 10% censored case,
while it maintains level of significance for sample size n ≥ 80 for the case of 20% censoring. Wald test2 does
not maintain level of significance for all sample sizes in uncensored as well as in censored case, but the rate
of convergence of the power function to value 1 is faster compared to other tests. Score test maintains level
of significance for sample size n ≥ 40 in uncensored case and it does not maintain level of significance for
all the sample sizes in censored case. Barring Wald test2, LRT and Score test have better power property
compared to the Wald test1.

Looking at the above conclusion, we recommend LRT for the uncensored case. For the censored case,
we recommend Wald Test1, but minimum sample size should be ≥ 80. Finite sample performances of the
likelihood ratio, Wald and Score test were considered by various researchers in the past in different context
(see Nairy and Rao (2003), Bhat and Rao (2007), Guddattu and Rao (2009, 2010), Sumathi and Rao (2009,
2010, 2011, 2013, 2014), Aruna and Rao (2014) and the references cited in these papers). No uniform pattern
is emerging from this investigation. A promising approach is to use Bayesian test, even though they are
computationally tedious. Frequentist comparison of likelihood based classical tests and Bayes tests in GE
can be a topic for future research.
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