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Abstract. The characteristic function of sums of n independent and identically distributed random
variables can be expressed as the nth power of the characteristic function of single random variable.
However, the characteristic function of maximum of n independent and identically distributed random
variables is not available in the literature in closed form. This paper identifies the conditions under which
the characteristic function of maxima and minima is expressible in closed form. Some applications of
these results are illustrated.

1. Introduction

Let {Xn}∞n=1 be a sequence of independent and identically distributed (i.i.d) non-degenerate random
variables (r.v) with common distribution function (d.f) FX(x) and characteristic function (c.f) φX(t). Let
Sn =

∑n
i=1Xi, then {Sn}∞n=1 is the sequence of partial sums of {Xn}∞n=1. The c.f of Sn is given by,

φSn(t) = (φX(t))n, n ≥ 1.

When the r.v are independent but not identically distributed,

φSn(t) =

n∏
i=1

φXi(t), n ≥ 1.

It is these explicit forms of φSn(t) that helps to derive stability properties of the sequence {Xn}∞n=1 of i.i.d
or independent non-identically distributed r.v in terms of the partial sum sequence {Sn}∞n=1. For example,
central limit theorem, laws of large numbers, etc., of sequence {Xn}∞n=1 (see Billingsley (1995) and Laha
and Rohatgi (1979)). However, in general the d.f of the partial sum Sn does not have an explicit form for
either the i.i.d case or in the independent non-identically distributed case. In such situations generally the
asymptotic distributions of Sn is used in the literature. For example, the central limit theorem says that,
if there exists sequence of constants {an}∞n=1 and {bn}∞n=1, with bn > 0, such that the normalized sequence
of partial sums {Sn−anbn

}∞n=1 converges in law to some non-degenerate random variable Z whose d.f is G,
then G is an α-stable distribution for some α > 0. The normal distribution arises as a special case of this
when α = 2. This approximation is extensively used in the statistics literature when the exact distribution
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of Sn cannot be computed exactly. For example, if the second moment of Xn exists for a sequence of i.i.d
r.v {Xn}∞n=1, Sn has an asymptotic normal distribution.

Two other statistics in the literature which are equally important as Sn are the partial maxima and
partial minima given by,

Mn = max(X1, X2, . . . , Xn) (1)

mn = min(X1, X2, . . . , Xn). (2)

These statistics are also extensively used in the statistics literature. For example, these statistics or their
functions are the minimal sufficient statistics in the non-regular family of distributions. Similarly the max-
imum likelihood estimators and the uniformly most powerful test functions for non-regular family of distri-
butions are functions of the above statistics. In reliability, these are the statistics used to study the parallel
and series systems. Unlike the d.f of Sn, the d.f of Mn and mn are in explicit form given by,

FMn
(x) = [FX(x)]n (3)

Fmn(x) = 1− [1− FX(x)]n. (4)

For a detailed account of the distribution of Mn, mn and all other order statistics and their functions see
David (1970). However, these exact distributions cannot be used for modeling purposes in many situations.
The famous Fisher-Tippet theorem identifies the limit distribution of Mn and mn whenever they exist. The
limit distributions of the linearly normalized maxima can be identified as one among the three extreme value
distributions namely Frechet, Weibull and Gumbel distributions, which are the max-stable distributions on
<. These three extreme value distributions can be put into a single family called the Generalized Extreme
Value Distributions. For details, see Embrechts et.al. (1997), Leadbetter et.al. (1983) and Resnick (1987).
Theorem 2.1 of Pancheva (2010) gives three equivalent conditions which characterize the generalized max
stable distributions on < under a more general normalization, for details see Pancheva (2010).

As discussed above, does there exist any situation in which we can express the c.f of maxima or minima
or both in an explicit form? This natural curiosity is the motivation behind this piece of work. The c.f of
Mn and mn can be expressed as:

φMn
(t) = E(eitMn), tε<

=

∫
<
eitxdFMn

(x)

=

{ ∫
< e

itxfMn
(x)dx, if F is continuous∑

x e
itxP (Mn = x), if F is discrete

=

{ ∫
< e

itxn[FX(x)](n−1)fX(x)dx, if F is continuous∑
x e

itx[FMn
(x)− FMn

(x−)], if F is discrete.
(5)

φmn(t) = E(eitmn), tε<

=

∫
<
eitxdFmn(x)

=

{ ∫
< e

itxfmn(x)dx, if F is continuous∑
x e

itxP (mn = x), if F is discrete

=

{ ∫
< e

itxn[1− FX(x)](n−1)fX(x)dx, if F is continuous∑
x e

itx[Fmn(x)− Fmn(x−)], if F is discrete.
(6)

No further simplifications to the integrals or sums in equations (5) and (6) are possible unless or until we
impose some restrictions over F . Let us try to evaluate these through some specific situations.
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Example 1.1. Suppose X follows exponential distribution with d.f FX(x) = 1− e−θx, x > 0, θ > 0. Now,
FMn(x) = (1 − e−θx)n and Fmn(x) = 1 − e−nθx. It is to be noted that minima of exponentially distributed
random variable with parameter θ again has an exponential distribution with parameter nθ. Let φX;θ(t) be
the c.f of X. Then, φX;θ(t) = θ

θ−it . Now, due to the one to one correspondence between d.f and c.f, the c.f

of minima, φmn;θ(t) = nθ
nθ−it = φX;nθ(t).

What will be the form of c.f of maxima in Example 1.1.? We narrow down our study to distributions
whose minima (maxima) belongs to the same family and try to get a form for c.f of maxima (minima) in
this paper. Rest of this paper is arranged as follows: Some basic concepts required to prove the main results
are given in Section 2. In Section 3, a relation between d.f of maxima and minima is derived and its special
significance when the distribution has closure property under maxima or minima is given. Section 4 gives
the c.f of maxima and minima when X is closed under either minima or maxima. Section 5 discusses an
application of the results derived in Section 4.

2. Basic Concepts

In this section we discuss some basic concepts required to prove the main results in the foregoing sections.
These concepts are illustrated through suitable examples.

Definition 2.1. Let X be a random variable with d.f FX;α involving a parameter α and (X1, X2, . . . , Xn)
be a random sample of independent observations of size n from FX;α. Then FX;α is said to be closed under
minima, mn, with respect to the parameter α if for every n ≥ 1, the d.f of mn is FX;gn(α), for some gn(α)
which is a function of the parameter α.

Example 2.2. Suppose X has exponential distribution with d.f FX;θ(x) = 1 − e−θx, x > 0, θ > 0, then
Fmn;θ(x) = 1 − e−nθx = FX;gn(θ)(x), where gn(θ) = nθ. Hence, exponential distribution is closed under
minima.

Example 2.3. Suppose, X follows Pareto distribution with d.f FX;α(x) = 1−( px )
α
, x > p, p > 0, α > 0 then

Fmn;α(x) = 1− ( px )
nα

= FX;gn(α)(x). Here, gn(α) = nα. i.e., Pareto distribution is closed under minima.

Example 2.4. If X has Weibull distribution with d.f given by, FX;θ(x) = 1− e−( xθ )
α

, x > 0, θ > 0, α > 0

then, Fmn;θ(x) = 1− e−n( xθ )
α

= FX;gn(θ)(x). In this case, gn(θ) = θ/n1/α. If we define X to have Weibull

distribution with d.f FX;θ(x) = 1 − e− x
α

θ , x > 0, θ > 0, α > 0, then Fmn;θ(x) = 1 − e−nx
α

θ = FX;gn(θ)(x),
and gn(θ) = θ/n. Hence, Weibull distribution is closed under minima.

Example 2.5. Let X has Geometric distribution with parameter 0 < p < 1, then,

FX;p(x) =

{
0, x < 0
1− (1− p)[x]+1, x ≥ 1

and hence,

Fmn;p(x) =

{
0, x < 0
1− (1− p)n([x]+1), x ≥ 1.

So, mn has Geometric distribution with parameter 0 < 1−(1−p)n < 1. Here gn(p) = 1−(1−p)n. Therefore,
geometric distribution is closed under minima.

Definition 2.6. Let X be a random variable with d.f FX;α involving a parameter α and (X1, X2, . . . , Xn)
be a random sample of independent observations of size n from FX;α. Then FX;α is said to be closed under
maxima, Mn, with respect to the parameter α, if for every n ≥ 1, the d.f of Mn is FX;hn(α), for some hn(α)
which is a function of the parameter α.

Example 2.7. Suppose X has power distribution with d.f FX;α(x) =
(
x
θ

)α
, 0 < x < θ, θ > 0, α > 0 then,

FMn;α(x) =
(
x
θ

)nα
= FX;hn(α)(x). Here, hn(α) = nα. i.e., power distribution is closed under maxima.
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Example 2.8. If X has an inverse Weibull distribution with FX;θ(x) = e−( θx )
α

, x > 0, θ > 0, α > 0 then,

FMn;θ(x) = e−n( θx )
α

= FX;hn(θ)(x). In this case hn(θ) = n1/αθ. Hence, inverse Weibull distribution is
closed under maxima.

Example 2.9. If X has Bernoulli distribution with d.f

FX;p(x) =

 0, x < 0
1− p, 0 ≤ x < 1, 0 < p < 1
1, x ≥ 1.

Then,

Fmn;p(x) =

 0, x < 0
1− pn, 0 ≤ x < 1, 0 < p < 1
1, x ≥ 1.

= FX;gn(p)(x)

and

FMn;p(x) =

 0, x < 0
(1− p)n, 0 ≤ x < 1, 0 < p < 1
1, x ≥ 1.

= FX;hn(p)(x).

Here, gn(p) = pn and hn(p) = 1 − (1 − p)n. Hence, Bernoulli distribution is closed under maxima and
minima.

Remark 2.10. Every two point distribution is closed under both maxima and minima.

The above examples are of standard distributions. Given an arbitrary F one can construct distribution
G having closure property.

Example 2.11. If X has an arbitrary distribution FX(x), then the family of distributions G(x) = [FX(x)]λ, λ >
0, which is well known in the literature as exponentiated family of distributions, is closed under maxima with
hn(λ) = nλ and the family H(x) = 1− [1− FX(x)]λ, λ > 0 is closed under minima with gn(λ) = nλ.

Theorem 2.12. If X is a positive valued random variable with continuous distribution FX;α(x) which is
closed under minima (maxima), then the d.f of 1

X (inverse of X) given by, G 1
X ;α(x) = 1 − FX;α(1/x), is

closed under maxima (minima).

Proof. Since X > 0, G 1
X ;α(x) = 1 − FX;α(1/x) is a d.f. Suppose FX;α(x) is closed under minima with

respect to the parameter α, then,

Fmn;α(x) = 1− (1− FX;α(x))n = FX;gn(α)(x).

Now,

GMn;α(x) = [G 1
X ;α(x)]n

= [1− FX;α(1/x)]n

= 1− FX;gn(α)(1/x)

= G 1
X ;gn(α)(x).

Similarly we can prove the case when X is closed under maxima.

Remark 2.13. Every max-stable (min-stable) distribution is closed under maxima (minima).

Remark 2.14. Exponential distribution discussed in Example 2.1. is closed under minima according to
Definition 2.1. but is not closed under maxima in the sense of Definition 2.2., since FMn;θ(x) = (1−e−θx)n 6=
FX;gn(θ)(x). However, this distribution is max-stable and min-stable in the sense of Pancheva (2010) with

Ln(x) = − 1
θ ln[1 − (1 − e−θx)n] and Ln(x) = nx respectively, where Ln(x) is the function discussed in

Pancheva (2010).
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3. Distribution Function of Maxima and Minima

In this section we derive a relation between d.f of maxima and minima. The d.f of maxima in terms of
d.f of minima and d.f of minima in terms of d.f of maxima are derived. This has special significance when
the distribution have closure property under maxima or minima. Probability density function (probability
mass function) also has a similar representation.

Lemma 3.1. Let X1, X2, . . . , Xn be i.i.d r.v with d.f FX(x). Then, the d.f of partial maxima Mn and partial
minima mn are given respectively by,

FMn(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
Fmk(x) (7)

and

Fmn(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
FMk

(x). (8)

Proof. Replacing [FX(x)]n by [1−(1−FX(x))]n in (3) and expanding and simplifying using binomial theorem
we get,

FMn(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
[1− (1− FX(x))k] (9)

=

n∑
k=1

(−1)(k−1)
(
n

k

)
Fmk(x).

Similarly using binomial expansion in (4) and simplifying we get,

Fmn(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
[FX(x)]k (10)

=

n∑
k=1

(−1)(k−1)
(
n

k

)
FMk

(x).

The following two corollaries give the corresponding representations for the probability density function
and probability mass function respectively.

Corollary 3.2. Let X1, X2, . . . , Xn be i.i.d r.v with continuous d.f FX(x) and density fX(x). Then, the
probability density function of partial maxima Mn and partial minima mn are given respectively by,

fMn(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
fmk(x) (11)

and

fmn(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
fMk

(x). (12)

Corollary 3.3. Let X1, X2, . . . , Xn be i.i.d r.v with discrete d.f FX(x) and probability mass function P (X =
x). Then, the probability mass function of partial maxima Mn and partial minima mn are given respectively
by,

P (Mn = x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
P (mk = x) (13)
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and

P (mn = x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
P (Mk = x). (14)

The following theorem gives a new representation for the d.f of maxima (minima) in terms of the d.f of
X, when X is closed under minima (maxima).

Theorem 3.4. Let X1, X2, . . . , Xn be i.i.d r.v with d.f FX;α(x). If X is closed under minima with respect
to the parameter α,

FMn;α(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
FX;gk(α)(x) (15)

and if X is closed under maxima with respect to the parameter α,

Fmn;α(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
FX;hk(α)(x). (16)

Proof. Since X is closed under minima with respect to the parameter α, by replacing Fmk;α(x) by FX;gk(α)(x)
in (7) we get,

FMn;α(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
FX;gk(α)(x)

and similarly if X is closed under maxima, from (8) we have,

Fmn;α(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
FX;hk(α)(x).

When FX;α admits a density fX;α, we have the following corollary.

Corollary 3.5. Let X1, X2, . . . , Xn be i.i.d r.v with continuous d.f FX;α(x). If X is closed under minima,

fMn;α(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
fX;gk(α)(x) (17)

and if X is closed under maxima with respect to the parameter α,

fmn;α(x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
fX;hk(α)(x). (18)

Now, when F is discrete, we have the following corollary.

Corollary 3.6. Let X1, X2, . . . , Xn be i.i.d r.v with discrete d.f FX;α(x). If X is closed under minima with
respect to the parameter α,

P (Mn;α = x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
P (X; gk(α) = x) (19)

and if X is closed under maxima with respect to the parameter α,

P (mn;α = x) =

n∑
k=1

(−1)(k−1)
(
n

k

)
P (X;hk(α) = x). (20)
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4. Characteristic Function of Maxima and Minima

In this section we derive the c.f of minima when X is closed under maxima and the c.f of maxima when
X is closed under minima. We have seen from equations (5) and (6) that the c.f of maxima and minima does
not have a compact form. However, when X is closed under maxima (minima) the c.f of minima (maxima)
have a representation similar to that of d.f in Theorem 3.4.

Theorem 4.1. Let X be a random variable with d.f FX;α which is closed under minima with respect to the
parameter α. Let the c.f of X be φX;α(t), then the c.f of mn is given by,

φmn;α(t) = φX;gn(α)(t) (21)

and that of Mn by,

φMn;α(t) =

n∑
k=1

(−1)k−1
(
n

k

)
φmk;α(t)

=

n∑
k=1

(−1)k−1
(
n

k

)
φX;gk(α)(t). (22)

Proof. We have, X ∼ FX;α and mn ∼ FX;gn(α). Hence, by the one to one correspondence between d.f and
c.f,

φmn;α(t) = φX;gn(α)(t).

Now if X is continuous,

φMn;α(t) =

∫
<
eitxfMn;α(x)dx

and from (17) on simplification we get,

φMn;α(t) =

n∑
k=1

(−1)(k−1)
(
n

k

)
φX;gk(α)(t).

Similarly if X is discrete from (18) we get,

φMn;α(t) =

n∑
k=1

(−1)(k−1)
(
n

k

)
φX;gk(α)(t).

Example 4.2. In the case of exponential distribution with d.f FX;θ(x) = 1− e−θx, φX;θ(t) = θ
θ−it . Then c.f

of minima, φmn;θ(t) = nθ
nθ−it and hence c.f of maxima is φMn;θ(t) =

∑n
k=1(−1)k−1

(
n
k

)
kθ

kθ−it .

Example 4.3. Suppose X has Weibull distribution with d.f FX;θ(x) = 1−e−( xθ )
α

, x > 0, θ > 0, α > 0 then,

φX;θ(t) =
∑∞
j=0

(it)jθj

j! Γ(1+ j
α ). Now, φmn;θ(t) = φX;θ/n1/α(t) and hence φMn;θ(t) =

∑n
k=1(−1)k−1

(
n
k

)
φX;θ/n1/α(t).

Next we prove the result for the c.f of minima when the original distribution is closed under maxima.

Theorem 4.4. Let X be a random variable with d.f FX;α which is closed under maxima with respect to the
parameter α. Let the c.f of X be φX;α(t), then the c.f of Mn is given by,

φMn;α(t) = φX;hn(α)(t) (23)
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and that of mn by,

φmn;α(t) =

n∑
k=1

(−1)k−1
(
n

k

)
φMk;α(t)

=

n∑
k=1

(−1)k−1
(
n

k

)
φX;hk(α)(t). (24)

Proof. Proof is similar to that of Theorem 4.1.

5. Some Applications of the Results

In this section we discuss some applications of the results proved in the previous section to evaluate
the moments of extrema. The kth moment of extema of a distribution exists iff the kth moment of the
base random variable exists and if the kth moment of the random variable X exists only if the c.f of X is

differentiable k times. Let us denote the kth derivative of the c.f of X by φ
(k)
X;α(t).

Theorem 5.1. Let the d.f FX;α be closed under minima with respect to the parameter α. Then,

E[(mn;α)k] = E[(X; gn(α))k] (25)

and

E[(Mn;α)k] =

n∑
k=1

(−1)k−1
(
n

k

)
E[(X; gk(α))k]. (26)

Proof. Differentiating (21) and (22) k times, dividing by ik and letting t = 0 we get the results.

Corollary 5.2. Let X be a r.v having d.f FX;α which is closed under minima with respect to the parameter
α, then the expectation of the partial minima mn is given by,

E[mn;α] = E[X; gn(α)] (27)

and the expectation of partial maxima Mn is given by,

E[Mn;α] =

n∑
k=1

(−1)k−1
(
n

k

)
E[X; gk(α)]. (28)

We have a similar result when the d.f F is closed under maxima.

Theorem 5.3. If the d.f FX;α is closed under maxima with respect to the parameter α, then,

E[(Mn;α)k] = E[(X;hn(α))k] (29)

and

E[(mn;α)k] =

n∑
k=1

(−1)k−1
(
n

k

)
E[(X;hk(α))k]. (30)

Proof. Proof follows as that of Theorem 5.1.

Corollary 5.4. Let X be a r.v having d.f FX;α which is closed under maxima with respect to the parameter
α, then the expectation of the partial maxima Mn is given by,

E[Mn;α] = E[X;hn(α)] (31)

and the expectation of partial minima mn is given by

E[mn;α] =

n∑
k=1

(−1)k−1
(
n

k

)
E[X;hk(α)]. (32)
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This result can be used to find the expected lifetime of a series or parallel system. An illustration of the
results in Theorem 5.1. and Theorem 5.3. is given in the following example.

Example 5.5. Consider a parallel system consisting of 5 components each having life distribution FX;θ(x) =
1− e−θx, x > 0, θ > 0. What will be the expected life time of the system?

A parallel system fails if all of its components fail. So the lifetime of the system is given by, FM5;θ(x) =
P (M5 ≤ x) = [P (X ≤ x)]5. Since exponential distribution is closed under minima, Fmk;θ(x) = FX;gk(θ) =

FX;kθ = 1− e−kθx, k = 1, 2, ..., 5 and E[mk; θ] = E[X; gk(θ)] = 1
kθ . Therefore,

E[M5; θ] =

5∑
k=1

(−1)k−1
(

5

k

)
E[X; gk(θ)]

=

5∑
k=1

(−1)k−1
(

5

k

)
1

kθ

=
137

60θ
.

Acknowledgement

The 1st author thanks the Indian Council of Medical Research (ICMR), for the financial support which
led to this research work. The authors thank the referees for their valuable suggestions which has improved
the original version of this paper. They also thank one of the referees in particular who pointed out to
clarify the connection of Definitions 2.1 and 2.2 with the definition of max-stability in Pancheva (2010).

References

[1] Billingsley, P. (1995) Probability and Measure, 3rd edition, John Wiley & sons.
[2] David, H.A. (1970). Order Statistics, 1st edition, John Wiley & Sons, New York.
[3] Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997) Modelling Extremal Events for Insurance and Finance. Springer,

Berlin.
[4] Laha, R.G. and Rohatgi,V.K. (1979) Probability Theory, John Wiley.
[5] Leadbetter, M.R., Lindgren, G., and Rootzen, H. (1983) Extremes and Related Properties of Random Sequences and

Processes. Springer-Verlag, New York.
[6] Pancheva, E. (2010) Max-Semistability: A Survey. ProbStat Forum, Vol 03, 11-24.
[7] Resnick, S.I. (1987) Extreme Values, Regular Variation and Point Processes, Springer, New York.


