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Limit Theorems for randomly weighted sums of random variables
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Abstract. Let (Xn) be a sequence of non-negative valued iid random variables with a common distri-
bution function F, belonging to the domain of attraction of a positive stable law, and (Wn) be a sequence
of bounded non-negative valued random variables. Assuming that the sequence (Wn) is iid and that (Xn)

and (Wn) are independent, we obtain the limit distribution of

(
Tn =

n∑
j=1

WjXj

)
, properly normalized.

We extend the result to the sums of random number of random variables and obtain the limit law as
geometric stable. Relaxing the condition on the weights and assuming (Wn) to be independent random
variables, we obtain the limit distribution of (Tn), but under the setup that F belongs to the domain of
normal attraction of a positive stable law. Also, for triangular array (Wn,1,Wn,2, . . . ,Wn,n) of weights,
with non-negative bounded iid random variables as components, n ≥ 1, we obtain the limit distribution

of (
n∑

j=1

Wn,jXj), when F belongs to the domain of normal attraction of a positive stable law.

1. Introduction

Let (Xn) be a sequence of identically distributed random variables (r.v.) with a common distribution
function (d.f.) F . Assuming that Xn, n ≥ 1, are mutually independent and that F belongs to the domain
of attraction of a stable law with exponent α, 0 < α < 2, α 6= 1, Beuerman (1975) established that the

sequence

(
n∑
k=1

f( kn )Xk

)
, properly normalized, also converges to a stable law with the same exponent, but

with scale change, where f(·) is a non negative continuous function over [0, 1]. As a special case, he deduced

the limit distribution of the sequence

(
n∑
k=1

A
(r)
n−k

A
(r)
n

Xk

)
of Cesaro sums, where A

(r)
n = Γ(n+r+1)

Γ(n+1)Γ(r+1) , n ≥ 1,

r ≥ 1, by taking f(x) =
A

(r)
n−k

A
(r)
n

at x = k
n , k = 1, 2 . . . n, and piece-wise continuous at other points. Wiber

(2006) established central limit theorem for the sequence

(
n∑
k=1

akXk

)
, when Xn’s are square integrable

and an’s are real constants. Kim and Kim (2005) considered triangular arrays {an,j , 1 ≤ j ≤ n} of real

constants as weights and obtained central limit theorem for (
n∑
j=1

an,jXj), when (Xn) is a dependent sequence.
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In the study of sums with random weights, let the weights be denoted by the sequence (Wn) of non-

negative r.v.s and let the sequence of weighted sums be denoted by

(
Tn =

n∑
j=1

WjXj

)
. Tang and Tsitsiashvili

(2003) have discussed the behaviour of (Tn) for large n, assuming that (Xn) is a sequence of subexponential
r.v.s, (Wn) is a sequence of dependent bounded r.v.s with values over [a, b] ( where a and b are some positive
constants) and that (Xn) and (Wn) are independent. Tang and Zhongyi (2014) have extended the results,
by relaxing the condition on (Wn). To be precise, they have considered Wn, n ≥ 1, taking values over (0, b],
for some constant b. They have also discussed extension to the whole of positive axis, but under some
additional conditions. Some applications in the areas of portfolio management, risk investment, capital
allocations etc. have been discussed. Gao and Wang (2010) and Hazra and Maulik(2012) have studied the
tail probability of randomly weighted sums, when the underlying r.v.s have heavy tailed distributions. The
same has been extended to the bivariate set up, by Li.J (2018). For similar work, one can see Hashorva et
al.(2010). In the study of multiplicative cascades, Mendalbrot (1974) has discussed the behaviour of sums
with random weights. Asimit et.al.(2017), discuss the asymptotic structure of the tail probabilities of the
weighted sum of order statistics of dependent r.v.s, when the underlying d.f.s belong to the max-domain
of attraction of Frechet law and Gumbel law and the weights are random. When the r.v.s Xn, n ≥ 1, are
negatively dependent Shen and Lin (2008) have discussed the large deviation results for (Tn) and Dong and
Wang(2017) have studied the moderate deviation results. Rosalsky and Sreehari (1998) consider triangular
arrays (Xn,1, Xn,2, . . . Xn,n) of r.v.s n ≥ 1, and (Wn,1,Wn,2, . . .Wn,n) of weights, n ≥ 1, and discuss the
convergence in probability and almost sure convergence of the sequence (

∑n
j=1Wn,jXn,j). Our interest is

in establishing the convergence in distribution of the sequence (Tn), assuming that the r.v. X1 belongs to
the domain of attraction of a positive stable law, which is closer in spirit to Beuerman (1975). We also
investigate the limit distribution of the weighted sums of random number of random variables, on the lines
of Klebanov et al. (1985).

Klebanov et al.(1985) have introduced the geometric stable laws associated with the sums of geo-

metric number of i.i.d. random variables, as the solutions of the equation

(
X = p1/α

N∑
j=1

Xj

)
, where

X,X1, X2, . . . XN are i.i.d. random variables and N is a geometric r.v. with values over the set of positive
integers, with parameter p, o < p < 1, under the additional assumption that (Xn) and N independent. It is
interesting to note that, a non-negative geometric stable r.v. is given by the Laplace transform (1− sα)−1,
0 < α < 1. Mohan et al.(1993) have obtained geometric stable laws as the limit laws of sums of random

number of r.v.s. Set

(
Un =

Nn∑
j=1

Xj

)
, where Nn is a geometric r.v. with values over the set of positive inte-

gers and with the parameter pn asymptotically equal to 1/n. When F belongs to the domain of attraction
of a strictly stable law with characteristic function g(t), assuming that (Xn) and (Nn) are independent, they
have established that (Un), properly normalised, converges to a geometric stable law with the characteristic
function (1 + log g(t))−1.

In this paper, we establish limit theorems for sums with random weights, when the underlying sequence
(Xn) of r.v.s is iid non-negative valued with a common d.f.F that belongs to the domain of attraction of a

positive stable law. In the next section, we discuss the limiting behaviour of

(
Tn =

n∑
j=1

WjXj

)
, when (Wn)

is a sequence of non-negative valued, bounded iid random variables. We also obtain the limit distribution

of

(
Un =

Nn∑
j=1

WjXj

)
, where Nn, n ≥ 1, are mutually independent geometric r.v.s with values over the set

of positive integers. We give an example to show that the above results need not necessarily hold when
W1 is unbounded. In Section 3, we obtain the limit distribution of (Tn), properly normalized, assuming
that (Wn) is a sequence of independent non-negative valued bounded r.v.s, but under the more stringent
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set up that F belongs to the domain of normal attraction of a positive stable law. In the last section, we
consider triangular arrays {Wn,j , j = 1, 2, . . . n} of weights and obtain the limit distribution of the sequence(
Rn =

n∑
j=1

Wn,jXj

)
, assuming that Wn,1,Wn,2 . . .Wn,n are non-negative bounded iid r.v.s, n ≥ 1, and that

F belongs to the domain of normal attraction of a positive stable law.

Preliminaries. We now present some results on stable laws and domain of attraction, so that the
reading of the paper is made easier. For a positive stable law with exponent α, 0 < α < 1, the Levy spectral
function is given by ν(u) = −c1u−α, u > 0, and the scale parameter c is given by c = −c1M(α) cos πα2 ,
where

M(α) =

∞∫
0

(e−v − 1)
dv

v1+α
. (1)

Let Sn =
∑n
j=1Xj . If there exists a sequence (Bn) with Bn → ∞ as n → ∞, such that (B−1

n Sn)
converges to a positive stable law with exponent α, 0 < α < 1, then the d.f. F is said to belong to the
domain of attraction of a positive stable law with exponent α and the same is denoted by F ∈ DA(α).

Further, the tail of F is regularly varying with F (x) = 1−F (x) =
L(x)

xα
, where L(·) is a slowly varying (s.v)

function ( for definition and properties of regularly varying functions, one can see for example, Feller(1966)
or Embrechts et.al (1997)) . In particular, if F (x) ∼ c1x

−α, as x → ∞ (‘∼’ means asymptotically equal),
for some c1 > 0, then F is said to belong to the domain of normal attraction of a positive stable law with
exponent α and the same is denoted by F ∈ DNA(α). Here Bn takes the form Bn = an1/α for some a > 0.
For more details on stable laws and domains of attraction see, Gnedenko and Kolmogorov (1954) and Feller
(1966). Throughout the paper we assume that c1 = 1, so that the scale parameter is c = −M(α) cos πα2 .

2. Identically distributed weights

In this section, we obtain the limit distributions of (Tn) and (Un), assuming that F ∈ DA(α) and that
(Wn) is a sequence of non negative, bounded i.i.d. random variables. We also discuss through an example,
that the results need not necessarily hold when W1 is unbounded.

Theorem 2.1. Suppose that there exists a sequence (Bn, Bn → ∞ as n → ∞) of constants such that the
sequence (B−1

n Sn) converges to a positive stable law with exponent α and scale c. Then (B−1
n Tn) converges

weakly to a positive stable law with exponent α and scale c EWα
1 .

Proof. Let G(·) denote the d.f. of W1. With no loss of generality, assume that W1 takes values in (0, 1).

Define Zn = WnXn, n ≥ 1, so that Tn =
n∑
j=1

WjXj =
n∑
j=1

Zj . Observe that Z1, Z2 . . . is an iid sequence and

denote by J(·) the d.f. of Z1. For any x > 0, let J(x) = 1− J(x). Note that

J(x) =

∫ 1

0

F

(
x

y

)
dG(y). (2)

Then for any k > 0 and x > 0, we have

J(kx)

J(x)
=

1∫
0

F
(
kx
y

)
dG(y)∫ 1

0
F
(
x
y

)
dG(y)

=

1∫
0

F( kxy )
F( xy )

F
(
x
y

)
dG(y)∫ 1

0
F
(
x
y

)
dG(y)

.
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Given that F ∈ DA(α), by Theorem 2, § 35, Gnedenko and Kolmogorov (1954) note that

lim
x→∞

F (kx)

F (x)
= k−α.

Consequently, for any given ε1 > 0, one can find a x1 > 0 such that for all x ≥ x1,

(1− ε1)k−α <
F (kx)

F (x)
< (1 + ε1)k−α

Since y ∈ (0, 1), note that for any x > 0,
x

y
> x. In turn, whenever x ≥ x1,

(1− ε1)k−α <
F
(
kx
y

)
F
(
x
y

) < (1 + ε1)k−α,

which implies that for x ≥ x1,

(1− ε1)k−α <
J(kx)

J(x)
< (1 + ε1)k−α.

Taking limit as x→∞ and then as ε1 → 0, we get

lim
x→∞

J(kx)

J(x)
= k−α.

Appealing to Theorem 2, § 35, Gnedenko and Kolmogorov (1954), we observe that J ∈ DA(α).

Given that (B−1
n Sn) converges to a stable with exponent α and scale c = −M(α) cos πα2 , for any x > 0, we

note that nF (xBn)→ x−α as n→∞. For y ∈ (0, 1) and x > 0,
x

y
> x implies that nF

(
x
yBn

)
≤ nF (xBn).

Hence for any given ε > 0 one can find a n2 > 0 such that, nF
(
xBn
y

)
≤ (x−α + ε) for all y ∈ (0, 1) and for

all n ≥ n2. By applying dominated convergence theorem, we see that

lim
n→∞

nJ(xBn) = lim
n→∞

1∫
0

nF

(
xBn
y

)
dG(y)

=

1∫
0

lim
n→∞

nF

(
xBn
y

)
dG(y) =

(
EWα

1

xα

)
.

(3)

We have hence established that (B−1
n Tn) converges to a stable law with exponent α and scale c EWα

1 . The
proof is complete.

For the next theorem, we assume that (Nn) is a sequence of geometric r.v.s with support over the set of
positive integers and with parameter pn asymptotic to 1

n . We further assume that (Nn) is independent of
(Xn) and (Wn).

Theorem 2.2. Let (B−1
n Sn) converge to a positive stable law with exponent α and scale c. Then,

(A) the sequence (B−1
n SNn) converges to a positive valued geometric stable law with exponent α and scale c

(B) the sequence (B−1
n Un) converges to a positive valued geometric stable law with exponent α and scale

c EWα
1 .
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Proof. Given that (B−1
n Sn) converges to a positive stable law with exponent α and scale c, from Mohan et

al.(1993), part (A) of the theorem immediately follows. Putting Zj = WjXj , j = 1, 2, . . . , n , one can see

that

(
Tn =

n∑
j=1

Zj

)
, where (Zn) is a sequence of i.i.d. random variables. From the above theorem, note

that (B−1
n Tn) converges to a stable law with exponent α and scale c EWα

1 . Again appealing to Mohan et
al.(1993), part (B) of the theorem follows.

Remark 2.3. In the above theorems, weights are assumed to be non negative, bounded r.v.s. On the other
hand, if they are allowed to be unbounded, then the result need not necessarily hold, as demonstrated by the
following example.

Example 2.4. Let (Xn) be iid Pareto with d.f. F (x) = x−α if x ≥ 1, = 1 if x < 1 and (Wn) be iid Pareto
with d.f. G(x) = x−α1 if x ≥ 1, = 1 if x < 1. Suppose that 0 < α,α1 < 1 and that α1 6= α. Note that
F ∈ DA(α). For any x > 1 we have,

J(x) =

∞∫
0

F

(
x

y

)
dG(y) = α1

x∫
1

yα

xα
dy

y1+α1
+ α1

∞∫
x

dy

y1+α1
(4)

=


α

α− α1

1

xα1
− α1

α− α1

1

xα
if α1 < α

α1

α1 − α
1

xα
− α

α1 − α
1

xα1
if α1 > α.

(5)

Hence J(x) ∼ α

α− α1

1

xα1
, as x → ∞, when α1 < α and J(x) ∼ α1

α1 − α
1

xα
, as x → ∞, when α1 > α.

Consequently, J(·) ∈ DA(α) when α1 > α, and J(·) ∈ DA(α1) when α > α1.

When α1 > α, both
(
n−1/αSn

)
and

(
n−1/αTn

)
converge to stable laws with exponent α and respectively,

with scales c = −M(α) cos πα2 and c1 = − α1

α1 − α
M(α) cos πα2 . When α1 < α,

(
n−1/αSn

)
converges to a

stable law with exponent α but,
(
n−1/αTn

)
fails to converge to any law. On the other hand

(
n−1/α1Tn

)
converges to a stable law with exponent α1. Also, when α1 > α, from Mohan et al.(1993), we note that
both (n−1/αSNn) and (n−1/αUn) converge to geometric stable laws with exponent α and scales c and c1
respectively.

3. Mutually independent weights.

In this section, we assume that F ∈ DNA(α), 0 < α < 1, and that (Wn) is a sequence of independent
r.v.s with values over (0, a), for some a > 0. We also assume that (Xn) and (Wn) are mutually independent.

Recalling that Sn =
n∑
j=1

Xj and Tn =
n∑
j=1

WjXj , n ≥ 1, we establish the following.

Theorem 3.1. Let EWα
n → θα as n→∞, for some θα > 0. Given that (n−1/αSn) converges to a positive

stable law with exponent α, 0 < α < 1, and scale c, the sequence (n−1/αTn) converges to a positive stable
law with the same exponent α but with scale c θα.

Proof. Assume, with no loss of generality, that a = 1 so that Wn, n ≥ 1, take values over (0, 1). Denote by
Gn(·), the d.f of Wn and by Hn(·), that of WnXn, n ≥ 1. By Theorem 4, § 25, Gnedenko and Kolmogorov
(1954), the theorem is established, once we show that

(i) for any x > 0,

lim
n→∞

n∑
j=1

(1−Hj(xn
1/α)) = θαx

−α (6)
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(ii)

lim
ε→0

lim sup
n→∞

n−2/α
n∑
j=1


∫ εn1/α

0

x2dHj(x)−

(∫ εn1/α

0

xdHj(x)

)2
 = 0, (7)

and

(iii) for any τ > 0,

lim
n→∞

n−1/α
n∑
j=1

∫ τn1α

0

xdHj(x) = r(τ), (8)

where r(τ) is a real valued function.

Define F (x) = 1−F (x) and Hn(x) = 1−Hn(x), x > 0, n ≥ 1. Then for any x > 0 we have the relation,

Hn(x) = P (WnXn > x) =

∫ 1

0

F (xy )dGn(y). (9)

From the fact that F ∈ DNA(α), we know that F (x) ∼ c1x
−α as x → ∞, for some c1 > 0. Assume that

c1 = 1, with no loss of generality. For any given ε1 > 0, one can find a x1 > 0 such that for all x ≥ x1,

(1− ε1)x−α < F (x) < (1 + ε1)x−α. (10)

For any x > 0, choose an integer n1 such that xn
1/α
1 > x1. Then from (10), for all n ≥ n1,

(1− ε1)n−1x−α < F (xn1/α) < (1 + ε1)n−1x−α.

Since y ∈ (0, 1), for any x > 0,
x

y
> x and hence for all n ≥ n1,

(1− ε1)n−1yαx−α ≤ F
(
xn1/α

y

)
≤ (1 + ε1)n−1yαx−α.

From (9), for all n ≥ n1 one gets,

(1− ε1)n−1x−αEWα
j ≤ Hj(xn

1/α) ≤ (1 + ε1)n−1x−αEWα
j ,

and in turn,

(1− ε1)

xα

n∑
j=1

EWα
j

n
≤

n∑
j=1

Hj(xn
1/α) ≤ (1 + ε1)

xα

n∑
j=1

EWα
j

n
(11)

Given that EWα
n → θα as n→∞, we note that the Cesaro sequence,

1

n

n∑
j=1

EWα
j → θα as n→∞. In (11),

taking limit as n→∞ and then as ε1 → 0 one gets,

lim
n→∞

n∑
j=1

(
1−Hj(xn

1/α)
)

= θαx
−α.

i.e. (6) is established. (7) is proved, once we show that

lim
ε→0

lim sup
n→∞

n−2/α
n∑
j=1

∫ εn1/α

0

x2dHj(x) = 0. (12)
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Since y ∈ (0, 1), for any given ε1 > 0, one can find a x1 > 0 such that for any x ≥ x1,

F

(
x

y

)
≤ (1 + ε1)yαx−α

In turn, for all x ≥ x1 and n ≥ 1, one can show that

Hn(x) ≤ (1 + ε1)x−αEWα
n (13)

For n large such that εn1/α ≥ x1, define T1,n = n−2/α
n∑
j=1

x1∫
0

x2dHj(x) and T2,n = n−2/α
n∑
j=1

εn1/α∫
x1

x2dHj(x).

Note that (12) holds, once we show that Tk,n → 0 as n→∞, k = 1, 2. Observe that

0 < T1,n < n
−2
α

n∑
j=1

x2
1Hj(x) ≤ n(1− 2

α )x2
1,

implies T1,n → 0 as n→∞.

By product formula,

εn
1
α∫

x1

x2dHj(x) = −
εn

1
α∫

x1

x2dHj(x)

=

εn
1
α∫

x1

Hj(x)dx2 − ε2n 2
αHj(εn

1
α ) + x2

1Hj(x1).

Consequently,

T2,n = n
−2
α

n∑
j=1

∫ εn
1
α

x1

Hj(x)2xdx− ε2
n∑
j=1

Hj(εn
1
α ) + n

−2
α x2

1

n∑
j=1

Hj(x1)

= V1,n − V2,n + V3,n, say (14)

From (13), we have

V1,n ≤ 2(1 + ε1)n−2/α
n∑
j=1

EWα
j

∫ εn1/α

x0

x1−αdx

≤ 2(1 + ε1)n−2/α
n∑
j=1

EWα
j

ε(2−α)n
2−α
α

(2− α)

=
2(1 + ε1)ε2−α

(2− α)

n∑
j=1

EWα
j

n
.

Given that EWα
n → θα as n → ∞, we note that the Cesaro sequence,

n∑
j=1

EWα
j

n → θα as n → ∞. Conse-

quently,

lim
ε→0

lim sup
n→∞

V1,n = 0. (15)

For εn1/α > x1, from (13) we have

V2,n ≤ ε2−α(1 + ε1)

n∑
j=1

EWα
j

n
.



Vasudeva / ProbStat Forum, Volume 11, April 2018, Pages 8–18 15

Again from the fact that
n∑
j=1

EWα
j

n → θα as n→∞, we get

lim
ε→0

lim sup
n→∞

V2,n = 0. (16)

Also, V3,n ≤ n(1−2/α)x2
1 implies that

lim
n→∞

V3,n = 0. (17)

From (14) to (17), we note that lim
ε→0

lim
n→∞

T2,n = 0, which in turn implies (12). Hence (ii) is established.

We now proceed to prove (iii). By applying product formula again, for τn1/α > x1 one gets,∫ τn
1
α

0

xdHj(x) = −
∫ τn

1
α

0

xdHj(x)

=

∫ τn
1
α

0

Hj(x)dx− τn 1
αHj(τn

1
α )

=

∫ x1

0

Hj(x)dx+

∫ τn
1
α

x1

Hj(x)dx− τn 1
αHj(τn

1
α ).

(18)

Hence for τn
1
α > x1,

n
−1
α

n∑
j=1

∫ τn
1
α

0

xdHj(x) = n
−1
α

n∑
j=1

∫ x1

0

Hj(x)dx+ n
−1
α

n∑
j=1

∫ τn
1
α

x1

Hj(x)

−τn
−1
α

n∑
j=1

Hj(τn
1
α ) (19)

It can be trivially seen that

lim
n→∞

n−1/α
n∑
j=1

∫ x1

0

Hj(x)dx ≤ lim
n→∞

x1n
−( 1

α−1) = 0 (20)

Since y ∈ (0, 1), for all x ≥ x1, from (10) we get,

(1− ε1)yαx−α ≤ F (xy ) ≤ (1 + ε1)yαx−α,

which implies that for x > x1 and n ≥ 1,

(1− ε1)x−αEWα
n ≤ Hn(x) ≤ (1 + ε1)x−αEWα

n . (21)

In (21), since ε1 is arbitrary,taking limit as n→∞ and then as ε1 → 0, one can show that,

lim
n→∞

n−1/α
n∑
j=1

∫ τn1/α

x1

Hj(x)dx =
τ (1−α)θα
(1− α)

(22)

and

lim
n→∞

τn−
1
α

n∑
j=1

Hj(τn
1/α) = τ (1−α)θα. (23)
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From (20), (22) and (23) we get

lim
n→∞

n−1/α
n∑
j=1

∫ τn1/α

0

xdHj(x) =
ατ (1−α)θα

(1− α)
.

Hence (iii) is established with r(τ) =
ατ (1−α)θα

(1− α)
.

From (i), (ii) and (iii) we note that (n−1/αTn) converges weakly to a positive stable law with exponent
α and scale c θα.

Remark 3.2. From the proof, one may notice that for the theorem to hold, it is enough to assume that

the Cesaro sequence,

(
EWα

1 + EWα
2 + . . .+ EWα

n

n

)
converges to θα, instead of the stronger condition,

EWα
n → θα as n → ∞. Suppose that P

(
Wn = 1

4

)
= P

(
Wn = 1

2

)
= 1

2 for n odd and P
(
Wn = 1

3

)
=

P
(
Wn = 1

2

)
= 1

2 for n even. Then EWα
n = 1

2

(
1

4α + 1
2α

)
for n odd and = 1

2

(
1

3α + 1
2α

)
for n even. One can

see that (EWα
n ) fails to converge but(

EWα
1 + EWα

2 + . . .+ EWα
n

n

)
→ 1

4

(
2

2α
+

1

3α
+

1

4α

)
= θα, (24)

say. Then
(
n−1/αTn

)
converges to a stable law with exponent α and scale c θα.

Taking P (Wn = an) = 1, where an is a positive constant, n ≥ 1, we have the following corollary.

Corollary 3.3. Let
(
n−1/αSn

)
converge to a stable law with exponent α and scale c and let (an) be the

sequence of positive constants such that
aα1 + aα2 + . . .+ aαn

n
→ θα(> 0) as n→∞. Then

(
n−1/α

n∑
j=1

ajXj

)
converges to a stable law with exponent α and scale c θα.

4. Triangular arrays of weights

Let Wn,1,Wn,2, . . . ,Wn,n be iid nonnegative, bounded r.v’s with common d.f. Gn(·), n ≥ 1 and let

F ∈ DNA(α), 0 < α < 1. Define Rn =
n∑
j=1

Wn,jXj , n ≥ 1. Assuming that {Wn,1,Wn,2, . . . ,Wn,n} and

{Xn} are independent, we obtain the limit distribution of (n−1/αRn).

Theorem 4.1. Suppose that (n−1/αSn) converges to a positive stable law with exponent α and scale c and
that lim

n→∞
EWα

n,1 = θα(> 0). Then (n−1/αRn) converges to a positive stable law with exponent α and scale

c θα.

Proof. Define Zn,j = Wn,jXj , j = 1, 2, . . . , n, n ≥ 1, and observe that Zn,1, Zn,2, . . . , Zn,n are iid. With no
loss of generality, assume that the r.v’s Wn,j , j = 1, 2, . . . , n, n ≥ 1, take values in (0, 1). Denote by Gn(·),
the d.f. of Wn,1 and by Kn(·) that of Zn,1, n ≥ 1. Note that for any x > 0,

Kn(x) =

∫ 1

0

F

(
x

y

)
dGn(y),

where Kn(x) = 1−Kn(x).
In order to establish the theorem, we appeal to Theorem 4, § 25, Gnedenko and Kolmogorov (1954). From
the fact that Zn,1, Zn,2, . . . , Zn,n are iid, we need show that for any x > 0,

lim
n→∞

n
(

1−Kn(xn1/α)
)

= θαx
−α,
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lim
ε→0

lim sup
n→∞

n(1− 2
α )


∫ εn1/α

0

x2dKn(x)−

(∫ εn1/α

0

xdKn(x)

)2
 = 0

and that for any τ > 0,

lim
n→∞

n(1− 1
α )

∫ τn1/α

0

xdKn(x) = r(τ),

where r(τ) is a real valued function of τ.

The above conditions can be established by proceeding as in the proof of Theorem 3.1, we omit the
details.

Remark 4.2. One can see that the d.f.s belonging to the domain of attraction of positive stable law also
belong to the max-domain of attraction of Frechet law. As such, the results of Asimit et al.(2017) hold under
our set up. In other wards, the tail probability of

∑n
j=1WjXj,n can be obtained, where X1,n ≥ X2,n · · · ≥

Xn,n is the order statistics of X1, X2, . . . Xn. It can be trivially seen that
∑n
j=1Xj =

∑n
j=1Xj,n. However,∑n

j=1WjXj and
∑n
j=1WjXj,n are not same. It will be of interest to investigate the limiting distribution of∑n

j=1WjXj,n, if it exist, in the set up of Asimit et al.(2017).
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