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Abstract. A new compound family of lifetime distributions is introduced to deal with lifetime data. We
study some of its structural properties. A special model of the family, called the Poisson Weibull-Pareto
(PWP) model, is defined. Its density can have shapes such as left-skewed, approximately symmetric and
right-skewed. It can also accommodate different hazard shapes such as reversed-J, increasing, decreasing
and upside-down bathtub. Various properties of this model are investigated including shape properties,
quantile function, explicit expressions for the ordinary and incomplete moments and generating function.
The ability of maximum likelihood approach to estimate parameters is assessed by a simulation study.
Three real life data sets have been analyzed, and the PWP model provides adequate fits.

1. Introduction

The Weibull distribution is a well-known distribution named after the Swedish physicist Weibull (1951)
who studied its application to fly ash and strength of material in 1951. It was further studied by Kao (1956)
who applied it to the failure of electronic components and systems, and since then, it has been extensively
used for analyzing lifetime data. The Weibull model has also been used for modeling phenomenon with
monotone failure rates. When modeling monotone hazard rates, the Weibull distribution may be an ini-
tial choice because of its negatively and positively skewed density shapes. However, it does not provide
reasonable parametric fits for modeling phenomenon with non-monotone failure rates such as the bathtub
shaped and the unimodal failure rates. In the last few years, new classes of extended Weibull distribu-
tions have been defined to provide more flexible failure rates. A review of some of these models includes
the exponentiated-Weibull by Mudholkar and Srivastava (1993), beta-Weibull by Famoye et al. (2005) and
Kumaraswamy-Weibull by Cordeiro et al. (2010), among others. However, most of the generalizations
were motivated from mathematical interests.

Recently, Alzaatreh et al. (2013) defined the cumulative distribution function (cdf) of the Weibull-X
family by

H (x; ξ) = 1− exp (−{− log [1−G(x)]}c) . (1)
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The probability distribution function (pdf) corresponding to (1) is given by

h (x; ξ) =
c g(x)

1−G(x)
{− log [1−G(x)]}c−1 exp (−{− log [1−G(x)]}c) . (2)

The main objective of this paper is to propose a new family of lifetime distributions with a strong
physical motivation. As explained below, it can give better fits than many known lifetime models, which
is an interesting property. The paper is unfolded as follows. In Section 2, we define the new family and
study some of its special members. In Sections 3 and 4, we obtain a linear representation for the density
and derive some general properties. In Section 5, we study some mathematical properties of PWP model.
In Section 6, the model parameters are estimated by the method of maximum likelihood. In Section 7, we
explore the flexibility of the PWP model by means of three applications to real data. Finally, Section 8 offers
some concluding remarks.

2. The new compound family

In this section, we give a physical motivation for the new family. Consider that a system has N sub-
systems functioning independently at a given time, where N is a truncated Poisson random variable with
probability mass function

P(N = n) =
λn

n!(eλ − 1)
, n = 1, 2, . . . .

Suppose that the failure time of each subsystem has the Weibull-X distribution defined by the cdf given
in Equation (1) (for x > 0). Further, let Yi denote the failure time of the ith subsystem andX denote the time
to failure of the first out of N functioning subsystems. We can write X = min (Y1, . . . , YN ). The conditional
cdf of X given N is

F (x | N) = 1− P
(
X > x | N

)
= 1− [P(Y1 > x)]

N
= 1− P [1−H (x; ξ)]

N
.

Thus, the unconditional cdf of X (for x > 0) can be expressed as

F (x) = 1− 1

eλ − 1

∞∑
n=1

{λ [1−H (x; ξ)]}n

n!

=
1− exp [−λH (x; ξ)]

1− e−λ

and then

F (x;λ, c, ξ) =
1− exp

(
−λ[1− e−{− log[1−G(x)]}c ]

)
1− e−λ

. (3)

Further, we can omit sometimes the dependence on the vector ξ of the baseline parameters λ and c and
write F (x) = F (x;λ c, ξ) and also f(x) = f(x;λ, c, ξ). The pdf corresponding to Equation (3) reduces to

f(x) =
λ c g(x) {− log [1−G(x)]}c−1 e−{− log[1−G(x)]}c

(1− e−λ) [1−G(x)]

× exp
(
−λ
{

1− e−{− log[1−G(x)]}c
})

, (4)

where g(x) is the baseline pdf. Equation (4) will be most tractable whenG(x) and g(x) have simple analytic
expressions. In the rest of this section and in Sections 3 and 4, a random variable X with cdf (3) is denoted
by X ∼ PWX(λ, c, ξ).
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Remark 2.1. The cdf and pdf in Equations (3) and (4) can be expressed in terms of the hazard and cumulative hazard
functions of g(x) as follow

F (x) =
1− exp

(
−λ[1− e−(Hg(x))

c

]
)

1− e−λ

and

f(x) =
λ c

1− e−λ
hg(x) (Hg(x))c−1e−(Hg(x))

c

exp
(
−λ[1− e−(Hg(x))

c

]
)
,

respectively, where hg(x) = g(x)/[1 − G(x)] and Hg(x) = − log[1 − G(x)] are the hazard and cumulative hazard
rate functions corresponding to the pdf g(x).

The survival function (sf) and hazard rate function (hrf) of X are given by

S(x) =
exp

(
−λ[1− e(Hg(x))

c

]
)
− e−λ

1− e−λ
,

and

h(x) =
λ c hg(x) (Hg(x))c−1e−(Hg(x))

c

1− exp
(
−λ[−e−(Hg(x))

c
]
) ,

respectively.

Remark 2.2. (i) The quantile function (qf) of the PWX family can be obtained by inverting Equation (3) as

Q(u) = G−1
(

1− exp
[
−
{
− log[1 + λ−1 log(1− (1− e−λ)u)]

}1/c])
. (5)

If U has a uniform (0, 1) distribution, then the solution of the nonlinear equationX = Q(U) has the density function
given in Equation (4).
(ii) If T follows the compound Poisson uniform distribution, then

X = G−1
(

1− e−{− log(1−T )}c
)

has the PWX family.
(iii) The shapes of the density and hrf of the PWX family are given by

g′(x)

g(x)
+
hg(x)

Hg(x)

[
Hg(x)− c (Hg(x))c−1

(
λ e−(Hg(x))

c

+ 1
)

+ c− 1
]

= 0

and

g′(x)

g(x)
+
hg(x)

Hg(x)

[
Hg(x) + c (Hg(x))c−1

(
λ e−(Hg(x))

c

exp
(
λe−(Hg(x))

c
)
− 1
− 1

)
+ c− 1

]
= 0,

respectively, where g′(x) = d
dx g(x).

2.1. Special PWX distributions
The PWX family (3) allows for greater flexibility of its tails and can be widely applied in many areas

of engineering and biology. In this section, we present some of its special cases because it extends several
widely-known distributions in the literature. In order to reduce redundancy in the scale parameters we set
λ = 1 in all the members of PWX family.
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2.2. The PW-Pareto (PWP) distribution
For the Pareto random variable with cdf G(x) = 1−

(
x/θ
)−α (for x > θ), equation (3) reduces to

F (x) =
1− exp

(
e−
[
α log(x/θ)

]c
− 1
)

1− e−1
. (6)

2.3. The PW-exponentiated-exponential (PWEE) distribution
If X follows the two-parameter exponentiated-exponential distribution with cdf G(x) =

(
1− e−θx

)α.
The cdf of three-parameter PWEE distribution (for x > 0) is defined from (3) as

F (x) =
1− exp

(
e−{− log[1−(1−e−θx)

α
]}c − 1

)
1− e−1

2.4. The PW-Lindley (PWL) distribution

TakingG(x) to be the Lindley cumulative distribution with parameter θ > 0,G(x) = 1−
(

1+θ+θ x
1+θ

)
e−θx,

it follows the three-parameter PWL cdf (for x > 0)

F (x) =
1− exp

(
e−{θx−log[

1+θ+θx
1+θ ]}c − 1

)
1− e−1

2.5. The PW-loglogistic (PWLL) distribution
The cdf of the LL distribution is (for x, a, b > 0) G(x) = 1 − [1 + (x/a)b]−1. Inserting this expression in

(3) gives the PWLL cdf

F (x) =
1− exp

(
e−{log[1+(x/a)b]−1}c − 1

)
1− e−1

2.6. The PW-Gumbel (PWGu) distribution
Consider the Gumbel distribution with location parameter µ ∈ R and scale parameter σ > 0 and cdf

(for x ∈ R) given by G(x) = exp
[
− exp

(
x−µ
σ

)]
. The mean and variance are equal to µ − γσ and π2σ2/6,

respectively, where γ is the Euler’s constant (γ ≈ 0.57722). Then, the PWGu cdf (for x ∈ R) becomes

F (x) =
1− exp

(
e−{− log[1−exp(− exp( x−µσ ))]}c − 1

)
1− e−1

3. Linear representation of the density

In this section, we use three important results. First, for any real parameter c and z ∈ (0, 1), the formula
holds

[− log(1− z)]c = zc +

∞∑
i=0

pi(c) z
i+c+1, (7)

where p0(c) = c/2, p1(c) = c (3c+5)/24, p2(c) = c (c2+5c+6)/48, p3(c) = c (15c3+150c2+485c+502)/5760,
etc, are Stirling polynomials.

Second, the exponential partial Bell polynomials in formal double series expansion are defined by

exp

(
t
∑
m≥1

zm
pm

m!

)
=
∑
n,k≥0

Bn,k
n!

pn tk, (8)
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where
Bn,k = Bn,k(z1, z2, . . . , zn−k+1) =

∑ n!

c1! c2! . . . (1!)c1(2!)c2 . . .
zc11 zc22 , . . . ,

and the summation is taken over all integers c1, c2, c3, . . . ≥ 0 such that c1 + 2c2 + 3c3 + · · · = n and
c1 + c2 + c3 + · · · = k. The exponential partial Bell polynomials can be computed in Mathematica and Maple
using BellY[n,k,{z1, . . . , zn−k+1}] and IncompleteBellB(n, k, z[1], z[2],. . . , z[n-k+1]).

Third, we consider the exponentiated-G (exp-G) family with power parameter γ > 0 whose cdf and pdf
are given by Π(x) = G(x)γ and π(x) = γ G(x)γ−1 g(x), respectively. This method for generating exp-G
distributions has received a great deal of attention in the last two decades and more than thirty exp-G
models have already been published.

Expanding the exponential term and using the binomial expansion in Equation (3), we obtain

F (x) =

∞∑
i=1

ai,0 +

i∑
j=1

ai,j e−j{− log[1−G(x)]}c

 , (9)

where

ai,j =
(−1)i+j+1 λi

i!(1− e−λ)

(
i

j

)
.

For j ≥ 1, we can write from Equation (7)

exp[−j {− log[1−G(x)]}c] = exp[−j G(x)c] exp
[
− j G(x)c

∞∑
m=1

qmG(x)m
]
,

where qm = qm(c) = pm+1(c) for m ≥ 1. By expanding both exponentials, the second one using Equation
(8), we obtain

exp[−j G(x)c] =

∞∑
r=0

(−j)r G(x)rc

r!

and

exp
[
− j G(x)c

∞∑
m=1

qmG(x)m
]

=
∑
n,k≥0

(−j)k B?n,k
n!

G(x)n+kc,

where B?n,k = Bn,k(q1, 2!q2, . . . , (n− k + 1)!qn−k+1).

Multiplying the last two expressions gives (for j ≥ 1)

exp[−j {− log[1−G(x)]}c] =

∞∑
n,k,r≥0

(−j)k+r B∗n,k
n! r!

G(x)n+(k+r)c.

By inserting this result in Equation (9), we have

F (x) = K +

∞∑
n,k,r≥0

tn,k,r Πn,(k+r)c(x), (10)

where Πn,(k+r)c(x) = G(x)n+(k+r)c is the cdf of the exp-G distribution with power parameter n+(k+r)c >

0, K =
∑∞
i=1 ai,0, dk,r = (−j)k+r

∑∞
i=1

∑i
j=1 ai,j and

tn,k,r =
dk,r B

?
n,k

n! r!
.



Mansoor, Tahir, Cordeiro, Alzaatreh and Zuabir / ProbStat Forum, Volume 11, April 2018, Pages 19–35 24

We define the set J = {n, k, r ≥ 0;n+ (k + r)c > 0}. By differentiating Equation (9), we obtain

f(x) =

∞∑
n,k,r∈J

tn,k,r πn,(k+r)c(x), (11)

where πn,(k+r)c(x) = [n+ (k+ r)c]G(x)n+(k+r)c−1 g(x) is the exp-G density with power parameter n+ (k+
r)c > 0. Equation (11) reveals that the density of the PWX family is a linear mixture of exp-G densities. So,
several of the family properties can be determined by knowing those properties of the exp-G model.

4. Some mathematical properties

In this section, we obtain the ordinary and incomplete moments, mean deviations and moment gener-
ating function (mgf) of X . General formulae for other quantities are not included for brevity but they are
available from the authors upon request. Established algebraic expansions for some mathematical quan-
tities of the PWX family can be more efficient than computing them directly by numerical integration of
its density function. Analytical facilities available in programming softwares like Mathematica, Maple,
Matlab, Ox and R can be used to apply these results in practice. Henceforth, let Za be a random variable
having the exp-G(a) density with power parameter a > 0.

4.1. Moments
First, we derive the sth ordinary moment of X , say µ′s = E(Xs). We have from Equation (11)

µ′s =

∞∑
n,k,r∈J

tn,k,r E(Zsn+(k+r)c). (12)

We provide a simple application of Equation (12) for the Poisson Weibull-Lomax distribution, where here
Za refers to the exp-Lomax(a) distribution with shape parameters a and σ and scale parameter δ. The
moments of Za are given by

E(Zsa) = γ δ−s
s∑
p=0

(
s

p

)
(−1)pB

(
1− s− p

σ
, γ

)
,

where B(a, b) = Γ(a) Γ(b)/Γ(a+ b) denotes the beta function.
Inserting this expression in Equation (12) gives

µ′s = δ−s
∞∑

n,k,r∈J

s∑
p=0

(−1)p [n+ (k + r)c] tn,k,r

(
s

p

)
B
(

1− s− p
σ

, [n+ (k + r)c]
)
. (13)

The nth central moment of X , say µn, is given by

µs = E(X − µ′1)s =

s∑
n=0

(
s

n

)
(−µ′1)s−n µ′n,

where µ′n is obtained from Equation (13).
The cumulants (κs) of X are determined recursively from

κs = µ′s −
s−1∑
n=0

(
s− 1

n− 1

)
κn µ

′
s−n,

where κ1 = µ′1, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + µ′31 , etc. The skewness (γ1) and kurtosis (γ2) of X follow

from the ordinary moments using well-known relationships.
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The sth incomplete moment, say ϕs(z), of X can be expressed from (11) as

ϕs(z) =

∫ t

0

xs f(x)dx =

∞∑
n,k,r∈J

tn,k,r

∫ z

0

xs πn,(k+r)c(x)dx. (14)

The last integral can be determined for most exp-G models. Let M = Median(X) = Q(0.5) be the
median of X . The amount of scatter in a population is evidently measured to some extent by the totality of
deviations from the mean and median given by δ1 = E(|X − µ′1|) and δ2 = E(|X −M |), respectively. They
can be expressed in term of the first incomplete moment as δ1 = 2µ′1 F (µ′1)−2ϕ1(µ′1) and δ2 = µ′1−2ϕ1(M),
respectively, where F (µ′1) comes from (3) and ϕ1(·) is the first incomplete moment given by (14) with s = 1.

Another application of the first incomplete moment is related to the Bonferroni and Lorenz curves
defined (for a given probability p) by L(p) = ϕ1(xp)/µ

′
1 and B(p) = ϕ1(xp)/(pµ

′
1), respectively, where xp

can be evaluated numerically by (5). These curves are very useful in economics, demography, insurance,
engineering and medicine.

4.2. Generating function

We provide two explicit expressions for the mgf of X , say M(t). First, we can write from Equation (11)

M(t) =

∞∑
n,k,r∈J

tn,k,rMn+(k+r)c(t), (15)

where Mn+(k+r)c(t) is the mgf of Zn+(k+r)c. Hence, the PWX generating function can be determined from
the exp-G generating function (see Nadarajah and Kotz (2006)).

Secondly, the mgf of X can be expressed from Equation (11) as

M(t) =

∞∑
n,k,r∈J

tn,k,r (n+ (k + r)c) ρ
(
t, n+ (k + r)c

)
, (16)

where

ρ(t, a) =

∫ ∞
−∞

et x G(x)a f(x)dx =

∫ 1

0

exp{t QG(u)}uadu.

5. Properties of the PWP distribution

In this section, we provide some structural properties of the PWP distribution. Most of these properties
follow from the results in Section 4.

The pdf corresponding to (6) is given by

f(x) =
c α
[
α log(x/θ)

]c−1
e−
[
α log(x/θ)

]c
x (1− e−1)

exp

(
e−
[
α log(x/θ)

]c
− 1

)
. (17)

Here and from now on, a random variable X having pdf given by Equation (17) is called the PWP
distribution, and is denoted by X ∼ PWP(c, α, θ). The sf and hrf of X are, respectively, given by

S(x) =
exp

(
e−
[
α log(x/θ)

]c
− 1
)
− e−1

1− e−1
,
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and

h(x) =
c α
[
α log(x/θ)

]c−1
e−
[
α log(x/θ)

]c
x
{

1− exp
(
− e−

[
α log(x/θ)

]c)} .

Figures 1 and 2 display some plots of the density and hrf of X when θ = 1 for different values of c
and α. The plots in Figure 1 reveal that the PWP density can produce various shapes such as reversed-J,
approximately symmetric, right-skewed and left-skewed. The plots in Figure 2 indicate that the hrf of X
has IFR (increasing failure rate), DFR (decreasing failure rate) and UBT (upside-down-bathtub) shapes.
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Figure 1: Plots of the PWP density for some values of c and α with θ = 1.
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Figure 2: Plots of the PWP hrf for some values of c and α with θ = 1.
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The following lemma gives a relation between the PWP and compound Poisson distributions.

Lemma 5.1. If a random variable T follows the compound Poisson uniform distribution, then X = θ exp{ 1α
(
−

log(1− T )
)1/c} ∼ PWP(c, α, θ).

The following lemma gives the qf of the PWP distribution.

Lemma 5.2. The qf of X is given by (for 0 < u < 1)

Q(u) = θ exp
( 1

α

[
− log

{
1 + log

(
1− (1− e−1)u

)}]1/c)
.

The following theorem shows the unimodality of the PWP distribution.

Theorem 5.3. The PWP distribution is unimodal. If c ≤ θ, the mode is at x = θ. If c > 1, then the mode is at
x = x0 θ, where x0 is the solution of the equation k(x) = 0, where

k(x) = c (α log x)c
[
e−(α log x)c + 1

]
+ log x+ 1− c, x > 1. (18)

Proof. If c ≤ θ, it is easily seen from Equation (17) that f ′(x) < 0 for all x > θ. Then, f(x) has a unique
mode at x = θ. Next, consider c > 1. Since limx→θ f(x) = 0, x = θ cannot be a modal point and therefore
f ′(x) = 0 is equivalent to k′(x/θ) = 0. This implies that the mode of f(x) is at x = x0 θ, where k(x0) = 0.
Further, the derivative of k(x) is given by

k′(x) =
1

x
+ c2(α log x)c−1e−(α log x)c

[
1 + e(α log x)c − (α log x)c

]
.

Note that since e(α log x)c > (α log x)c for all x > 1, this implies that k′(x) > 0 for all x > 1. So, k(x) = 0 has
at most one solution. By using the facts that limx→1 k(x) = 1 − c < 0 and limx→∞ f(x) = ∞, we conclude
that k(x) = 0 has a unique solution at x = x0 and hence f(x) has a unique mode at x = x0 θ.

5.1. Moments

The following theorem provides some conditions for the existence of moments of the PWP distribution.
Let X ∼ PWP(c, α, θ) and n ∈ N.

Theorem 5.4. (i) If c > 1, then E(Xn) exists.
(ii) If c = 1, then E(Xn) exists if and only if α > n.
(iii) If c < 1, then E(Xn) does not exist.

Proof. Without loss of generality, we take θ = 1. Now, letting u = α log x, the existence of E(Xn) is equiva-
lent to the existence of the integral I =

∫∞
0
uc−1 e−(u

c−nu)du. For c < 1, it is clear that limu→∞ uc−1 e−(u
c−nu) =

∞ and therefore the integral I does not exist. Now, let c > 1 and φ(u) = uc − nu. If φ′(m0) = 0, then m0 =

(n/c)
1
c−1 and then φ(u) is convex and strictly increasing in (m0,∞). This implies that there exist constants a

and b > 0 such that φ(u) ≥ a+bu in (m0,∞). Next, we can write I =
∫m0

0
uc−1 e−φ(u)du+

∫∞
m0

uc−1 e−φ(u)du.
Since the first integral on the right hand side is bounded, it is enough to prove the existence of the second
one. We have

∫∞
m0

uc−1 e−φ(u) ≤
∫∞
m0

uc−1e−(a+bu)du <∞ for all c > 1 and b > 0.

Finally, we consider the last case when c = 1. Then, E(Xn) exists iff J =
∫∞
1
x−(α−n+1) e

1
xα dx. By using

the following inequality

ex < (1− x)−1, x < 1 [Abramowitz and Stegun (1972), p. 70],

we have J <
∫∞
1

xn−1

xα−1dx ∼
∫∞
1
x−(α−n+1)dx <∞ iff α > n.
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Now we derive explicit expressions for the moments of the PWP distribution. Let Za follow the
exponentiated-Pareto (EP) distribution with shape parameters α and a and scale parameter θ. The cdf
and pdf of Za are given by

FEP (z) =
[
1− (x/θ)−α

]a
and

fEP (z) =
aα

θ
(x/θ)−α−1

[
1− (x/θ)−α

]a−1
.

The sth ordinary moment of Za (for s < θ) is given by

E(Zsa) =
a

θ

∞∑
q=0

(−1)q

(q + 1)

[α(q + 1) θs]

[α(q + 1)− s]

(
a− 1

q

)
. (19)

The sth incomplete moment of Za is given by

m′s(za) =
a

θ

∞∑
q=0

(−1)q

(q + 1)

[α(q + 1) θs]

[α(q + 1)− s]

(
a− 1

q

)[
1− (z/θ)

s−α
]
. (20)

The PWP pdf can be expressed from Equation (11) as a linear mixture of EP pdfs and some of its math-
ematical properties can be immediately obtained from those of the EP model. The sth ordinary and incom-
plete moments of X follow easily from Equations (13) & (19) and (14) & (20), respectively.

6. Estimation

The maximum likelihood estimators (MLEs) enjoy desirable properties and can be used when con-
structing confidence intervals and also in test statistics. The normal approximation for these estimators in
large sample distribution theory is easily handled either analytically or numerically. Here we employ the
maximum likelihood method.

Let x1, . . . , xn be the observed values from X ∼ PWP(c, α, θ) and let ρ = (c, α, θ)> be the vector of
model parameters. The log-likelihood function for ρ is given by

` = n log(c α)− n log
(
1− e−1

)
−

n∑
i=1

log(xi) + (c− 1)

n∑
i=1

log
[
α log

(
xi/θ

)]
−

n∑
i=1

[
α log

(
xi/θ

)]c
−

n∑
i=1

[
1− e

(
α log(xi/θ)

)c]
. (21)

The MLE of θ is the first order-statistic x(1) since x ≥ θ. Two components of the score vector U(ρ) are given
by

Uc =
n

c
−

n∑
i=1

log
[
α log (xi/θ)

]
−

n∑
i=1

[
α log (xi/θ)

]c
log
[
α log (xi/θ)

][
1− e

(
α log(xi/θ)

)c]
,

Uα =
n

α
+

n∑
i=1

c log
(
xi/θ

) [
α log(xi/θ)

]c−1
−

n∑
i=1

c e

(
α log(xi/θ)

)c
log
(
xi/θ

) [
α log(xi/θ)

]c−1
.
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Setting Uc and Uα equal to zero and solving the equations simultaneously yields the MLEs (ĉ, α̂). The
log-likelihood function given in Equation (21) can be maximized either directly by using the OPTIM in
the R-language developed by the R Development Core Team (2009), SAS (PROC NLMIXED), Ox program
(sub-routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by differentiating (21).
These functions were applied and executed for a wide range of initial values. This process often leads to
more than one maximum. However, in these cases, we considered the MLEs corresponding to the largest
value of the maximized log-likelihood. In a few cases, no maximum was identified for the selected initial
values. In these cases, new initial values were tried in order to obtain a maximum point.

6.1. Monte Carlo simulation study
We assess the performance of the maximum likelihood method for estimating the PWP parameters

by using Monte Carlo simulation. We consider sixteen parameter combinations, repeat the process 1,000
times under three different sample sizes n=50, 100 and 300. The biases and mean squared errors (MSEs) of
the parameter estimates are listed in Table 1. In the simulation study, we consider θ to be unknown and
estimate it by the minimum order statistic x(1). The figures in Table 1 indicate that the MLEs are close to
the true parameter values, which means that the maximum likelihood method can be used effectively for
estimating the parameters of the PWP distribution. The biases decrease as the n increases, as expected.

Table 1: Biases and MSEs for various parameter values.

Sample size Actual values Biases MSEs

n c α θ c̃ α̃ θ̃ c̃ α̃ θ̃

50 0.5 0.5 1.0 0.0115 0.0501 0.0005 0.0033 0.0373 0.0000
0.5 0.8 2.0 0.0173 0.0646 0.0009 0.0039 0.0809 0.0000
0.5 1.0 1.0 0.0155 0.0767 0.0003 0.0036 0.1286 0.0000
0.5 5.0 2.0 0.0166 0.4598 0.0001 0.0036 3.4630 0.0000
0.8 0.5 1.0 0.0195 0.0213 0.0095 0.0089 0.0115 0.0002
0.8 0.8 2.0 0.0266 0.0321 0.0120 0.0099 0.0281 0.0004
0.8 1.0 1.0 0.0182 0.0479 0.0048 0.0085 0.0463 0.0001
0.8 5.0 2.0 0.0245 0.2032 0.0019 0.0084 1.1774 0.0000
1.0 0.5 1.0 0.0310 0.0109 0.0262 0.0148 0.0068 0.0015
1.0 0.8 2.0 0.0362 0.0251 0.0331 0.0157 0.0173 0.0023
1.0 1.0 1.0 0.0337 0.0209 0.0127 0.0150 0.0285 0.0003
1.0 5.0 2.0 0.0235 0.1754 0.0046 0.0129 0.6829 0.0000
5.0 0.5 1.0 0.1446 0.0022 1.1894 0.3477 0.0003 1.5564
5.0 0.8 2.0 0.0911 0.0022 1.0395 0.1594 0.0004 1.1618
5.0 1.0 1.0 0.1658 0.0034 0.4743 0.3424 0.0011 0.2413
5.0 5.0 2.0 0.1951 0.0149 0.1598 0.3766 0.0256 0.0269

100 0.5 0.5 1.0 0.0081 0.0271 0.0002 0.0016 0.0162 0.0000
0.5 0.8 2.0 0.0070 0.0381 0.0002 0.0015 0.0374 0.0000
0.5 1.0 1.0 0.0089 0.0481 0.0001 0.0016 0.0634 0.0000
0.5 5.0 2.0 0.0034 0.1862 0.0000 0.0016 1.3549 0.0000
0.8 0.5 1.0 0.0116 0.0111 0.0038 0.0043 0.0055 0.0000
0.8 0.8 2.0 0.0081 0.0112 0.0050 0.0040 0.0132 0.0001
0.8 1.0 1.0 0.0112 0.0125 0.0020 0.0038 0.01860 0.0000
0.8 5.0 2.0 0.0088 0.0900 0.0008 0.0041 0.5225 0.0000
1.0 0.5 1.0 0.0182 0.0030 0.0126 0.0069 0.0031 0.0003
1.0 0.8 2.0 0.0087 0.0118 0.0154 0.0062 0.0085 0.0005
1.0 1.0 1.0 0.0114 0.0100 0.0066 0.0064 0.0121 0.0001
1.0 5.0 2.0 0.0148 0.0528 0.0025 0.0065 0.3024 0.0000
5.0 0.5 1.0 0.0561 0.0011 0.9776 0.1568 0.0001 1.0405
5.0 0.8 2.0 0.0911 0.0022 1.0395 0.1594 0.0004 1.1618
5.0 1.0 1.0 0.0594 0.0003 0.3970 0.1660 0.0005 0.1692
5.0 5.0 2.0 0.0930 0.0116 0.1392 0.1772 0.0142 0.0205
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Table 1: Continued

Sample size Actual values Biases MSEs

n c α θ c̃ α̃ θ̃ c̃ α̃ θ̃

300 0.5 0.5 1.0 0.0048 0.0097 0.0000 0.0008 0.0068 0.0000
0.5 0.8 2.0 0.0029 0.0155 0.0001 0.0007 0.0182 0.0000
0.5 1.0 1.0 0.0036 0.0183 0.0000 0.0008 0.0267 0.0000
0.5 5.0 2.0 0.0035 0.0961 0.0000 0.0007 0.6941 0.0000
0.8 0.5 1.0 0.0060 0.0035 0.0018 0.0019 0.0024 0.0000
0.8 0.8 2.0 0.0031 0.0097 0.0022 0.0019 0.0065 0.0000
0.8 1.0 1.0 0.0055 0.0057 0.0008 0.0018 0.0100 0.0000
0.8 5.0 2.0 0.0071 0.0413 0.0003 0.0019 0.2373 0.0000
1.0 0.5 1.0 0.0082 0.0025 0.0062 0.0029 0.0015 0.0001
1.0 0.8 2.0 0.0043 0.0072 0.0077 0.0029 0.0041 0.0001
1.0 1.0 1.0 0.0128 0.0106 0.0034 0.0030 0.0068 0.0000
1.0 5.0 2.0 0.0082 0.0202 0.0013 0.0031 0.1632 0.0000
5.0 0.5 1.0 0.0515 0.0001 0.8026 0.0765 0.0001 0.7036
5.0 0.8 2.0 0.0263 0.0017 0.8798 0.0748 0.0002 0.8271
5.0 1.0 1.0 0.0367 0.0005 0.3466 0.0806 0.0002 0.1276
5.0 5.0 2.0 0.0382 0.0052 0.1191 0.0751 0.0064 0.0150

7. Applications

In this section, we provide three applications of the PWP model. We compare the goodness-of-fit of the
PWP model with the fits of the beta Pareto (BP) by Akinsete et al. (2008), Kumaraswamy Pareto (KP) by
Bourguignon et al. (2013), exponentiated Pareto (EP) and Pareto (P) Models. For each model, we estimate
the parameters by using the method of maximum likelihood and the goodness-of-fit statistics for the mod-
els are compared by using the Akaike information criterion (AIC) and Kolmogorov-Smirnov (K-S) statistic.
The density functions of the BP and KP models are, respectively, given by

BP : fBP (x; a, b, α, θ) = 1
B(a,b)

(
α
θ

)(
x
θ

)−α b−1[
1− (xθ )−α

]b−1
, a, b, α > 0, x > θ;

KP : fKP (x; a, b, α, θ) = a bα θα

xα+1

{
1− (xθ )−α

}a−1 [
1−

{
1− (xθ )−α

}a]b−1
, a, b, α > 0, x > θ.

Before progressing further, we provide the histograms of the data sets in Figures 3(b), 4(b) and 5(b). We
note that the data sets are reversed-J, right-skewed and approximately symmetric. We further provide the
scaled TTT transform (see Aarset (1987)), of the data sets in Figures 3(a), 4(a) and 5(a). The TTT plot for
the first data set indicates an increasing failure rate, the one for the second data set reveals an upside-down
bathtub and that one for the third data set shows an increasing failure rate.

7.1. Flood Discharge Data

The first real life data set consists of maximum annual flood discharges of the North Saskachevan River
and is given in the R-contributed package DAAG. A summary of the data is: n= 48, x̄ = 51.49519, s=
32.37683, skewness= 2.06859 and kurtosis= 4.95065. The MLEs (with SEs in parentheses), AIC and K-
S statistics, and K-S p-values are listed in Table 2. Based on these figures, we note that the PWP model
gives the best fit. The summary statistics and Figure 3(b) reveal that the first data set is right-skewed. This
indicates that the new distribution has the ability to fit data set with right-skewed shape. The P-P plot
given in Figure 6 also supports the results of Table 2.

7.2. Plasma Concentration Data

The second real life data set consisting of plasma concentrations of indomethicin is given by Weisberg
(2014) and studied by Cordeiro et al. (2014) and Alizadeh et al. (2015). A summary of the data is: n= 66,
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Figure 3: (a) TTT plot and (b) Histogram of flood discharge data.
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Figure 4: (a) TTT plot and (b) Histogram of plasma concentration data.

x̄ = 0.59182, s= 0.632582, skewness= 1.44762 and kurtosis= 1.47087. The MLEs (with SEs in parenthesis),
AIC and K-S statistics, and K-S p-value are given in Table 3. From the figures in Table 3, we conclude that
the PWP model provides the best fit. A close look at the summary statistics and Figure 4(b) reveals that the
second data set is reversed-J shape. This indicates that the new distribution has the ability to fit data with
reversed J-shape. The P-P plots given in Figure 7 also support the results of Table 3.

7.3. Carbon Fibre Data
The third data set refers to the failure stresses of single carbon fibres (length 1mm) (Crowder et al.

(1991)). A summary of the data is: n= 57, x̄ = 4.2350, s= 0.8352, skewness= 0.0710 and kurtosis= 2.7098.
The figures in Table 4 indicate that the PWP model provides the best fit with the lowest AIC and K-S values.
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Figure 5: (a) TTT plot and (b) Histogram of carbon fibre data.

Table 2: MLEs, their standard errors (in parentheses) and goodness-of-fit measures for flood discharge data

Distribution Estimates AIC K-S p-value

PWP(α, c, θ) 0.9164 1.8483 19.885 422.4191 0.063 0.9915
(0.2086) (0.0811) -

BP(a, b, α, θ) 2.3210 4.8647 0.5148 19.885 425.5542 0.069 0.5781
(0.4587) (16.9975) (1.6348) -

KP(a, b, α, θ) 1.7978 22.9391 0.2077 19.885 424.4109 0.0604 0.5955
(0.2917) (55.3589) (0.3417) -

EP(α, a, θ) 1.9971 2.4403 19.885 424.2743 0.0764 0.3463
(0.3048) (0.5426) -

P(α, θ) 1.2111 19.885 436.6653 0.1843 0.0818
0.1766 -

Table 3: MLEs, their standard errors (in parentheses) and goodness-of-fit measures for plasma concentra-
tion data.

Distribution Estimates AIC K-S p-value

PWP(α, c, θ) 0.3987 1.8462 0.05 55.5110 0.1050 0.3865
(0.1862) (0.0306) -

BP(a, b, α, θ) 2.2383 6.9608 0.1556 0.05 59.1441 0.138 0.1889
(0.3693) (17.7514) (0.3697) -

KP(a, b, α, θ) 1.7970 25.2028 0.0845 0.05 58.8954 0.1273 0.2421
(0.2172) (26.3843) (0.0598) -

EP(α, a, θ) 0.8404 2.3118 0.05 58.4432 0.1339 0.1942
(0.1100) (0.4311) -

P(α, θ) 0.5241 0.05 74.5504 0.1568 0.0817
(0.0650) -
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Figure 6: P-P plots of the PWP, BP, KP, EP and P models for flood discharge data.

The summary statistics and Figure 5(b) indicate that the third data set is approximately symmetric. This
shows that the PWP model has the ability to fit data with approximately symmetric shape. The P-P plot in
Figure 8 also support the results in Table 4.

8. Concluding remarks

We propose a new family of distributions by compounding the Poisson distribution and a sub-class
of the T-X family (Alzaatreh et al. (2013)) of distributions called the Poisson Weibull-X family. The math-
ematical properties of the new family such as ordinary and incomplete moments, quantile and generat-
ing functions are obtained. Further, a special model of the Poisson Weibull-X family, named the Poisson
Weibull-Pareto (PWP) distribution, is considered and some of its structural properties are investigated in-
cluding transformation, modes, ordinary and incomplete moments, quantile and generating functions and
mean deviations. The maximum likelihood method is used for estimating the model parameters. The suit-
ability of the maximum likelihood estimates is investigated by a simulation study. We fit the proposed
distribution to three real data sets to prove empirically its flexibility.
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Table 4: MLEs, their standard errors (in parentheses) and goodness-of-fit measures for carbon fibre data.

Distribution Estimates AIC K-S P-value

PWP(α, c, θ) 1.3411 4.1029 2.247 136.480 0.057 0.9893
(0.0490) (0.4302) -

BP(a, b, α, θ) 9.0992 17.3704 0.6900 2.247 145.515 0.100 0.5911
(1.7259) (26.8925) (0.9078) -

KP(a, b, α, θ) 4.9429 50.0216 0.8797 2.242 149.3523 0.1273 0.2421
(1.1999) (9.9178) (0.6503) -

EP(α, a, θ) 4.9620 12.7885 2.242 150.2419 0.1339 0.1942
(0.5288) (3.5442) -

P(α, θ) 1.6006 2.242 221.955 0.1568 0.0817
(0.2139) -
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Figure 8: P-P plots for the PWP, BP, KP, EP and P models for carbon fibre data.


