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Asymptotic normality of a recursive estimator of a conditional hazard
function with functional stationary ergodic data
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Abstract. In this paper, we investigate a recursive kernel estimator of the conditional hazard function
whenever functional stationary ergodic data are considered. Under the assumption of ergodicity, the nov-
elty of our approach is that we do not require independence of the observations. It is shown that, under
some wild conditions, the recursive kernel estimate of the three parameters (conditional density, condi-
tional distribution and conditional hazard) are asymptotically normally distributed.

1. Introduction

Recently there has been an increasing interest in the study of functional data. For an overview of the
present state on nonparametric functional data (FDA), we refer to the works of (4) and (13), and the refer-
ences therein.

Conditional hazard estimation with a functional explanatory variable and a scalar response acquired
considerable interest in the statistical literature. The first work was proposed by Ferraty et al. (5), where
they introduce a kernel estimator and prove some asymptotic properties (with rates) in various situations
including censored and/ or dependent variables. Quintela-del-Rı́o (12) extended the results of Ferraty et
al. (5) by calculating the bias and variance of these estimates, and establishing their asymptotic normality.
In the case of completely observed data, another estimators have been proposed for the conditional hazard
function by different approaches. In 2014, Attouch and Belabed (2) have studied the nonparametric esti-
mator of the conditional hazard function using the k Nearest Neighbors (k-NN) estimation method and
they have shown its asymptotic properties in the case of independent data. Another approach has been
proposed by Massim and Mechab (11) based on the local linear method, they have established the almost
complete convergence of the proposed estimator.

In the case of the functional spatial data, the works on the conditional hazard function is limited and
we can refer to (9) where they studied the almost complete convergence of the kernel type estimate. These
authors studied in (10) the mean squared convergence rate and proved the asymptotic normality of the
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proposed estimator.

In recent years, the statistical modeling for functional ergodic data has been an increasing interest and
a great importance in various fields. The general framework of ergodic functional data has been initiated
by Laı̈b and Louani (7),(8) who stated consistencies with rates together with the asymptotic normality of
the regression function estimate. In this topic of ergodic data, several works have been published, for ex-
ample, Gheriballah et al. (6) showed the almost complete convergence (with rate) of a family of robust
nonparametric estimators for regression function. More recently, Ardjoun et al. (1) treated the almost
complete convergence and the asymptotic normality of the estimator of conditional mode, Benziadi et al.
(3) studied the almost complete rate convergence of functional recursive kernel of the conditional quantiles.

This paper is organized as follows: Section 2 introduces the estimator of the conditional hazard function.
In section 3 we will define some notations and hypothesis. The asymptotic normality of the proposed
estimator of the conditional hazard function is given in Section 4. Finally, the proofs of our results are
given in the Appendix.

2. The recursive estimation of the conditional hazard function

Let (Xi, Yi)i=1,...,n be a sequence of strictly stationary ergodic processes. Where Xi are values in semi-
metric space (F , d) and Yi are real-valued random variables. Nx will denote a fixed neighborhood of x. We
assume that the regular version of the conditional probability of Y given X exists. Moreover, we suppose
that, for all x ∈ Nx the conditional distribution function of Y given X = x, the recursive kernel estimator
of the conditional hazard function h(y|x) such that

h(y|x) = f(y|x)
1− F (y|x)

, for y ∈ R and F (y|x) < 1

is

ĥ(y|x) = f̂(y|x)
1− F̂ (y|x)

, ∀y ∈ R.

We define the recursive kernel estimator of the conditional distribution function by

F̂ (y|x) =

n∑
i=1

K(a−1i d(x,Xi))H(b−1i (y − Yi))

n∑
i=1

K(a−1i d(x,Xi))

(1)

where K is the kernel, H is a strictly increasing distribution function and ai, bi are a sequences of positive
real numbers such that lim

n→ +∞
an = lim

n→ +∞
bn = 0.

The recursive kernel estimator f̂(.|x) of f(.|x) is given by

f̂(y|x) =

n∑
i=1

b−1i K(a−1i d(x,Xi))H
′(b−1i (y − Yi))

n∑
i=1

K(a−1i d(x,Xi))

. (2)

3. Notations and hypothesis

The assumptions that we will need in our study are the following:
The functional ergodic data is carried out by the following consideration: for i = 1, ..., n,we putFk is the σ-
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algebra generated by ((X1, Y1), ..., (Xk, Yk)). We pose Bk is the σ-algebra generated by ((X1, Y1), ..., (Xk, Yk), Xk+1).
We suppose that the strictly stationary ergodic process (Xi, Yi)i∈N satisfies

(H1) (i) The function φ(x, h) := P(X ∈ B(x, h)) > 0,∀h > 0,
where B(x, h) := {x′ ∈ F/d(x′, x) < h}.
(ii) For all i = 1, ..., n there exists a deterministic function φi(x, .) such that almost surely 0 < P(Xi ∈
B(x, h)|Fi−1) ≤ φi(x, h),∀h > 0 and φi(x, h)→ 0 as h→ 0.

(iii) For all sequence (hi)i=1,...,n > 0,

n∑
i=1

P(Xi ∈ B(x, hi)|Fi−1)

n∑
i=1

φ(x, hi)

→ 1.

(H2) (i) Let S be a compact set of R, the conditional distribution function F (.|x) is such that, ∀y ∈ S,
∃β > 0, inf

y∈S
(1− F (y|x)) > β, ∀ (y1,y2)∈ S × S , ∀ (x1,x2)∈ Nx ×Nx

|F (y1|x1)− F (y2|x2)| ≤ C1(d(x1, x2)
β1 + |y1 − y2|β2)

with C1 > 0, β1 > 0, β2 > 0.

(ii) The density f(.|x) is such that,∀y ∈ S, ∃α > 0 f(y|x) < α, ∀(y1,y2)∈ S × S , ∀ (x1,x2)∈ Nx ×Nx

|f(y1|x1)− f(y2|x2)| ≤ C2(d(x1, x2)
β1 + |y1 − y2|β2)

with C2 > 0, β1 > 0, β2 > 0.

(H3) ∀(y1, y2) ∈ R2 |H(j)(y1)−H(j)(y2)| ≤ C|y1 − y2|, for j = 0, 1∫
|t|β2H(1)(t)dt <∞ and

∫
H

′2
(t)dt <∞.

(H4) K is a function with support (0,1) such that 0 < C1 < K(t) < C2 <∞.

(H5) The bandwidths (ai, bi) satisfied : ∀t ∈ [0, 1]

lim
n→+∞

∑n
i=1 φ(x, tai)∑n
i=1 φ(x, ai)

= βx(t)

and

lim
n→+∞

√
nφn(x)

ϕn(x)

(
n∑
i=1

aβ1

i φ(x, ai) +

n∑
i=1

bβ2

i φ(x, ai)

)
= 0

where ϕn(x) = n−1
∑n
i=1 φ(x, ai).

Comments on hypotheses:

The condition (H1) involves the ergodic nature of the data and the small ball techniques used in this pa-
per. The hypothesis (H1)(iii) is a direct consequence of Beck’s theorem. The assumption (H2) presents the
Lipschitz’s condition to the conditional distribution function and conditional density function, it means
that the both functions are continuous with respect to each variable and permits us to evaluate the bias
term without using the differentiability. Hypothesis (H3) impose some regularity conditions upon the dis-
tribution function H used in our estimates. The condition (H4) is very standard in nonparametric function
estimation. The assumptions (H5) is a technical condition.
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4. Main result: Asymptotic normality

Theorem 4.1. Under hypotheses (H1)-(H5), we have for all x ∈ A(
nϕn(x)

σ2
h(x, y)

)1/2

(ĥ(y|x)− h(y|x)) D−→ N (0, 1) as n→∞ (3)

where A = {x, σ2
h(x, y) 6= 0} and σ2

h(x, y) =
α2h(y|x)

α2
1(1− F (y|x))

with α1 = K(1)−
∫ 1

0
K ′(s)βx(s)ds and α2 = K2(1)−

∫ 1

0
(K2(s))′βx(s)ds.

The proof of this theorem is based on the following decomposition and lemmas below:

ĥ(y|x)− h(y|x) = 1

1− F̂ (y|x)

[
f̂(y|x)− f(y|x)

]
+

h(y|x)
1− F̂ (y|x)

[
F̂ (y|x)− F (y|x)

]
. (4)

Lemma 4.2. Under hypothesis of the theorem 4.1, we have(
nϕn(x)

σ2
F (x, y)

)1/2

(F̂ (y|x)− F (y|x)) D−→ N (0, 1) as n→∞ (5)

where σ2
F (x, y) =

α2F (y|x)
(
1− F (y|x)

)
α2
1

.

Lemma 4.3. Under hypothesis of the theorem 4.1, we have(
nϕn(x)

σ2
f (x, y)

)1/2

(f̂(y|x)− f(y|x)) D−→ N (0, 1) as n→∞ (6)

where σ2
f (x, y) =

α2f(y|x)
α2
1

.

The proof of lemma 4.2 is based on the following decomposition where we put, for any x ∈ F , and
i = 1, ...., n;Ki = K(a−1i d(x,Xi)) and Hi = H(b−1i (Yi − y)).

We start by writing

F̂ (y|x)− F (y|x) = B̂n,1(x, y) +
R̂n,1(x, y)

F̂D(x)
+
Q̂n,1(x, y)

F̂D(x)
(7)

where

Q̂n,1(x, y) = (F̂N (y|x)− FN (y|x))− F (y|x)(F̂D(x)− FD(x)),

B̂n,1(x, y) =
FN (y|x)
FD(x)

and R̂n,1(x, y) = −B̂n,1(x, y)(F̂D(x)− FD(x))
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with

F̂N (y|x) =
1

nϕn

n∑
i=1

K(a−1i d(x,Xi))H(b−1i (Yi − yi)),

FN (y|x) =
1

nϕn

n∑
i=1

E[K(a−1i d(x,Xi))H(b−1i (Yi − yi)|Fi−1),

F̂D(x) =
1

nϕn

n∑
i=1

K(a−1i d(x,Xi)),

FD(x) =
1

nϕn

n∑
i=1

E[K(a−1i d(x,Xi))|Fi−1].

The proof of the lemma 4.2 is a consequence of the following lemmas, whose proofs are given in the Ap-
pendix

Lemma 4.4. Under the hypothesis of theorem 4.1(
nϕn(x)

σ2
F

)1/2

Q̂n,1(x, y)
D−→ N (0, 1) as n→∞.

Lemma 4.5. Under the hypothesis (H1) and (H5), we have

F̂D(y|x)− 1 = op(1).

Lemma 4.6. Under the hypothesis (H1), (H2) and (H3) we have(
nϕn(x)

σ2
F

)1/2

B̂n,1(x, y) = op(1) as n→∞.

Lemma 4.7. Under the hypothesis (H1), (H2) and (H5) we have(
nϕn(x)

σ2
F

)1/2

R̂n,1(x, y) = op(1) as n→∞.

The proof is based on the following decomposition and lemmas below.

f̂(y|x)− f(y|x) = B̂n,2(x, y) +
R̂n,2(x, y)

F̂D(x)
+
Q̂n,2(x, y)

F̂D(x)
(8)

where

Q̂n,2(x, y) = (f̂N (y|x)− fN (y|x))− f(y|x)(F̂D(x)− FD(x)),

B̂n,2(x, y) =
fN (y|x)
FD(x)

− f(y|x) and R̂n,2(x, y) = −B̂n,2(x, y)
(
f̂N (y|x)− fN (y|x)

)
with

f̂N (y|x) =
1

nϕn

n∑
i=1

b−1i K(a−1i d(x,Xi))H
′(b−1i (Yi − yi))

E
(
K(a−1i d(x,Xi))

) ,

fN (y|x) =
1

nϕn

n∑
i=1

E[b−1i K(a−1i d(x,Xi))H
′(b−1i (Yi − yi))|Fi−1]

E
(
K(a−1i d(x,Xi))

) .
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Lemma 4.8. Under the hypothesis of theorem 4.1(
nϕn(x)

σ2
f

)1/2

Q̂n,2(x, y)
D−→ N (0, 1) as n→∞.

Lemma 4.9. Under the hypothesis (H1), (H2) and (H3) we have(
nϕn(x)

σ2
f

)1/2

B̂n,2(x, y) = op(1) as n→∞.

Lemma 4.10. Under the hypothesis (H1), (H2) and (H5) we have(
nϕn(x)

σ2
f

)1/2

R̂n,2(x, y) = op(1) as n→∞.

5. Confidence bands

A usual application of asymptotic normality is to establish confidence bands for the estimates. Our goal
in this section is the application of our asymptotic normality result (Theorem 4.1) to build the confidence
intervals for the true value of h(y|x) for a given curve X = x. In nonparametric estimation, the asymptotic
variance depends on certain unknown functions. In our case, we have

σ2
h(x, y) =

α2h(y|x)
α2
1(1− F (y|x))

where h(y|x), F (y|x), α1 and α2 are unknown a priori and have to be estimated in practice. Then one
can obtain a confidence bands even if σ2

h(x, y), is functionally specified. Now a plug-in estimate for the
asymptotic standard deviation σ2

h(x, y), can be easily obtained using the estimators ĥ(y|x), F̂ (y|x), α̂1 and
α̂2 of h(y|x), F (y|x), α1 and α2 respectively, that is

σ̂2
h(x, y) =

α̂2ĥ(y|x)
α̂2
1(1− F̂ (y|x))

.

We estimate empirically the constants α1 and α2, as follows:

α̂1 =
1

nφ(x, a1)

n∑
i=1

K(a−11 d(x,Xi)), α̂2 =
1

nφ(x, a1)

n∑
i=1

K2(a−11 d(x,Xi)).

Remark that in the special case when K = I[0,1], it becomes immediately that α1 = α2 = 1.
Now the asymptotic confidence band at asymptotic level 1− ζ for h(y|x) is given by[

ĥ(y|x)− u1− ζ2

(
σ̂2
h(x, y)

nϕn(x)

)1/2

, ĥ(y|x) + u1− ζ2

(
σ̂2
h(x, y)

nϕn(x)

)1/2
]

where u1− ζ2 denotes the 1− ζ
2 quantile of the standard normal distribution.

6. Concluding remarks

This article provides a theoretical framework about recursive conditional hazard function estimator
with functional stationary ergodic data. The resulting recursive conditional hazard function estimator has
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been shown to be consistent and asymptotically normally distributed under appropriate conditions. To
prove the results, the methodology is based upon the martingale approximation used in (7). The ergodic
hypothesis used in the paper avoids complicated probabilistic calculations of the mixing condition.

The hypothesis (H1) plays an important role, which involve the recursive estimate, the ergodic nature of
the data and the small ball techniques. It’s clear that this hypothesis is quite milder than Laib and Louani.
Indeed, unlike in Laib and Louani (7), it is not necessary to write (approximately) the concentration func-
tion P(Xi ∈ B(x, h)) and the conditional concentration function P(Xi ∈ B(x, h)|Fi−1) a product of two
independent nonnegative functions of the center and of the radius.

The recursive estimate is very fast in practice because the smoothing parameter is linked to the obser-
vation (Xi, Yi), which permits to update our estimator for each additional observation.

It should be noted that our work is a generalization of the results obtained by other authors in two
different directions (the estimation method and the data correlation). Indeed, the classical kernel method
used by Ferraty et al. (5) and Quintela-del-Rı́o (12) can be considered as a special case of this study by
considered that ai = hK and bi = hH . On the other hand, in the independent case, condition (H1(ii)) is
automatically verified and for all i = 1, ..., n take φi(x, .) = φ(x, .) and we obtain the same result given by
Quintela-del-Rı́o (12) when (Xi, Yi) are independent.

7. Appendix

Proof of Lemma 4.4.
We use the same ideas in Laib and Louani (2011).
For all i = 1, ..., n, we define

ηni =

(
nϕn(x)

σ2
F

) 1
2

(Hi(y)− F (y|x))
Ki(x)

nϕn(x)

and, we define ξni = ηni − E
(
ηni |Fi−1

)
.

It is easily seen that (
nϕn(x)

σ2
F

) 1
2

Q̂n,1(x, y) =
1√
n

n∑
i=1

ξni

as ξni is a triangular array of martingale differences according the σ-algebra Fi−1, we are in position to
apply the central limit theorem based on unconditional lindeberg condition to establish the asymptotic
normality of Q̂n,1(x, y). This can be done if we establish the following statements:

a) 1
n

n∑
i=1

E
(
ξ2ni|Fi−1

)
−→1 in probability ,

b) 1
n

n∑
i=1

E
(
ξ2niIξ2ni>εn

)
−→0 holds for any ε > 0 (Lindeberg condition).

Proof of part (a)

E
(
ξ2ni|Fi−1

)
= E

((
ηni − E

(
ηni|Fi−1

))2)
= E

(
η2ni|Fi−1

)
− E2

(
ηni|Fi−1

)
.

The statement (a) follows then if we show that:
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(1) lim
n−→∞

1

n

n∑
i=1

E2
(
ηni|Fi−1

)
= 0 in probability,

(2) lim
n−→∞

1

n

n∑
i=1

E
(
η2ni|Fi−1

)
= 1 in probability.

To prove (1), we put A =
(
nϕn(x)
σ2
F

) 1
2

, we have

E (ηni|Fi−1) =
A

nϕn(x)
E
((
Hi (y)− F (y|x)

)
Ki(x)|Fi−1

)
|E (ηni|Fi−1)| =

A

nϕn(x)

∣∣E [[(E(Hi(y)|Bi−1
)
− F (y|x)

)
Ki(x)

]
|Fi−1

]∣∣
=

A

nϕn(x)

∣∣E [[E(Hi(y)|Xi

)
− F (y|x)Ki(x)

]
|Fi−1

]∣∣
under (H1) and (H4), we have

Cφi(x, ai) ≤ E
(
Ki(x)|Fi−1

)
≤ C ′φi(x, ai)

Next, an integration by parts and a change of variable allow to get

E
(
Hi(y)|Xi

)
=

∫
R
H(1)(t)F (y − bit|Xi)dt.

Thus, we have∣∣E (Hi(y)|Xi)− F (y|x)
∣∣ ≤ C ′aβ1

i

combining this results, we have

|E (ηni|Fi−1)| ≤ AC ′′
φi(x, ai)

nϕn(x, ai)
aβ2

i

1

n
(E (ηni|Fi−1))2 ≤ a2β1

i

1

σ2
F

∑n
i=1

(
aβ1

i φi(x, ai)
)2

nϕn(x, ai)
−→ 0 (Under (H3)).

Now, we have to prove (2), to do this, we observe that

1

n

n∑
i=1

E
(
(ηni)

2 |Fi−1
)

=
A2

nϕ2
n(x, ai)

n∑
i=1

E
((
Hi(y)− F (y|x)

)2
K2
i (x)|Fi−1

)
=

A2

nϕ2
n(x, ai)

n∑
i=1

[
E
(
K2
i (x)H

2
i (y)|Fi−1

)
− 2F (y|x)E

(
K2
i (x)Hi(y)|Fi−1

)
+ (F (y|x))2 E

(
K2
i (x)|Fi−1

)]
.
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We put

I1 =

n∑
i=1

E
(
K2
i (x)H

2
i (y)|Fi−1

)
,

I2 =

n∑
i=1

E
(
K2
i (x)Hi(y)|Fi−1

)
,

I3 =

n∑
i=1

E
(
K2
i (x)|Fi−1

)
.

We write

I1 = F (y|x)
n∑
i=1

E
(
K2
i (x)|Fi−1

)
+

n∑
i=1

E
(
K2
i (x)H

2
i (y)|Fi−1

)
− F (y|x)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
= F (y|x)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
+

n∑
i=1

E
[
E
(
H2
i (y)|Xi

)
K2
i (x)|Fi−1

]
−F (y|x)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
≤

n∑
i=1

E
[
E
(
H2
i (y)|Xi

)
K2
i (x)|Fi−1

]
− F (y|x)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
.

Using the same argument as those used in proof of the part (1), we obtain

1

nϕn(x, ai)
I2 = o(1).

For I3, we get

E
(
K2
i (x)|Fi−1

)
= K2(1)φi(x, ai)−

∫ 1

0

(
K2(u)

)′
φi(x, ai)du

so under (H1) we have

1

nϕn(x, ai)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
=

1

nϕn(x, ai)
K2(1)

n∑
i=1

φi(x, ai)

− 1

nϕn(x, ai)

∫ 1

0

(
K2(1)

)′ n∑
i=1

φi(x, uai)du

= K2(u)−
∫ 1

0

(
K2(u)

)′ ∑n
i=1 φi(x, ai)

nϕn(x, ai)
du

= o(1).

By combining this results, we deduce that lim
n−→∞

n∑
i=1

E
(
η2ni|Fi−1

)
= 1, which complete the proof of part (a).

Proof of part (b)
The Lindeberg condition in which implies that

E
(
ξ2niIξni>εn

)
≤ 4E

(
η2niIηni>nε/2

)
.

Let a > 1 and b > 1 such that 1
a + 1

b = 1 making use the Holder’s and Markov’s inequalities one can write
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for all ε > 0

E
(
η2niIηni>nε/2

)
≤ E (ηni)

2a

(nε/2)2a/b
.

Taking C0 ∈ R∗+ and 2a = 2 + δ, from some δ > 0, such that

E
(
|Hi(y)|2+δ

)
<∞ and E

(
|Hi(y)− F (y|x)|2+δ |Xi = u

)
=W 2+δ(u) is a continuous function, we obtain

4E
(
η2niIηni>nε

)
≤ C0

(
nϕn(x, ai)

σ2
F

)2+δ
1

(nϕn(x, ai))
2+δ

(
|Hi(y)− F (y|x)|2+δK2+δ

i (x)
)

≤ C0

(
nϕn(x, ai)

nσ2
F

)2+δ E
(
E
(
|Hi(y)− F (y|x)|2+δK2+δ

i (x)|Xi

))
(nϕn(x, ai))

2+δ

≤ C0

(
nϕn(x, ai)

nσ2
F

)2+δ E
(
K2+δ
i (x)W 2+δ(x)

)(
(ϕn(x, ai))

2+δ
)

≤ C0

(
nϕn(x, ai)

nσ2
F

)2+δ E
(
K2+δ
i (x)

∣∣W 2+δ(x)−W 2+δ(x)
∣∣+ ∣∣W 2+δ(x)

∣∣)E (K2+δ
i (x)

)
(ϕn(x))

2+δ

≤ C0

(
n

σ2
F

)2+δ

E
(
K2+δ
i (x)

) ( ∣∣W 2+δ(x)
∣∣+ o(1)

)
.

Consequently 1
n

n∑
i=1

nE
(
ξ2niIξni>εn

)
−→0 as n −→∞which completes the proof of lemma.

Proof of Lemma 4.5
Observe that

F̂D(x)− 1 =
1

ϕn(x, ai)

n∑
i=1

(
Ki(x)− E

(
Ki(x)|Fi−1

)
+ E

(
Ki(x)|Fi−1

)
− 1
)

=
1

ϕn(x, ai)

n∑
i=1

(
Ki(x)− E

(
Ki(x)|Fi−1

))
︸ ︷︷ ︸

T1

+
1

ϕn(x, ai)

n∑
i=1

(
E
(
Ki(x)|Fi−1

)
− 1
)

︸ ︷︷ ︸
T2

.

The proof of the lemma follows then if show that
T1 = o(1) as n −→∞ and T2 −→ 0 in probability as n −→∞.
For T2,
Under (H3) and (H1) we prove that

1

ϕn(x, ai)

n∑
i=1

E
(
Ki(x)|Fi−1

)
= o(1) as n −→∞.

So, it is easily seen that T2 −→ 0 in probability as n −→∞.
For T1,

observe that T1(x) =
n∑
i=1

Lni(x),where {Lni(x)} is a triangular array of martingale differences with respect

to the σ-algebra Fi−1.
Combining the Burkholder inequality( see P.H. All and C.Heyde p(23), 1980) and Jensen’s inequality (see
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Laib and Laouni p(365),2011), we obtain for any ε > 0, there exists a constant C0 > 0 such that

P
(
|T1(x)| > ε

)
≤ C0

E
(
K2

1 (x)
)

ε2n (ϕn(x))
2 = o

(
1

ε2nϕn(x, ai)
+ o(1)

)
since nϕn(x) −→∞ as n −→∞, we conclude then that T1 = o(1) in probability as n −→∞.
Which completes the proof of lemma 4.5.
Proof of Lemma 4.6
We have

B̂n,1(x, y) =
FN (y|x)
FD(x)

.

We write∣∣∣B̂n,1(x, y)∣∣∣ =
1

n∑
i=1

E
(
Ki(x)|Fi−1

)
n∑
i=1

[
E
[
Ki(x)E

[
Hi(y)|Bi−1

]
|Fi−1

]

− F (y|x)E
(
Ki(x)|Fi−1

)]
=

1
n∑
i=1

E
(
Ki(x)|Fi−1

)
n∑
i=1

[
E
[
Ki(x)E

[
Hi(y)|Xi

]
|Fi−1

]

− F (y|x)E
(
Ki(x)|Fi−1

)]
≤ 1

n∑
i=1

E
(
Ki(x)|Fi−1

)
n∑
i=1

[
E
[
Ki(x)E

[
Hi(y)|Xi

]
− F (y|x)|Fi−1

]]
.

Next, an integration by parts and change of variable allow to get

E
[
Hi(y)|Xi

]
=

∫
R
H(1)(t)F (y − bit|Xi)dt

thus, we have∣∣E[Hi(y)|Xi

]
− F (y|x)

∣∣ ≤ ∫
R
H(1)(t) |F (y − bit|Xi)− F (y|x)| dt (9)

under (H2), we obtain that

IB(x,ai)(Xi)
∣∣E[Hi(y)|Xi

]
− F (y|x)

∣∣ ≤ C ∫
R
H(1)(t)(aβ1

i + |t|β2bβ2

i )dt (10)

and under (H4) we prove that
1

n

n∑
i=1

E
(
Ki(x)|Fi−1

)
= o(1).

We achieve the proof of lemma 4.6.
Proof of Lemma 4.7
We write

R̂n,1(x, y) = −
(
B̂n,1(x, y)− F (y|x)

)(
F̂N (x, y)− FN (x, y)

)
= −

(
FN (x, y)− F (y|x)FD(x, y)

FD(x, y)

)(
F̂N (x, y)− FN (x, y)

)
.
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Clearly, it is suffices to show that

(a)
(
FN (x,y)−F (y|x)FD(x,y)

FD(x,y)

)
= o(1),

(b)
(
F̂N (x, y)− FN (x, y)

)
= o(1).

The proof of the first hand uses arguments similar to those used in the proof of lemma 4.6 of the second
part, will be established
(i) E

(
F̂N (x, y)− FN (x, y)

)
= 0, V ar

(
F̂N (x, y)− FN (x, y)

)
−→ 0 as n −→∞.

For all i = 1, ..., n, we put

δi(x, y) =
1

nϕn(x, ai)
[Ki(x)Hi(y)− E (Ki(x)Hi(y)|Fi−1)]

where δi(x, y) is a triangular array of martingale differences according to the σ−algebra Fi−1 next by
(H1)(ii) and (H4) we obtain

F̂N (x, y)− FN (x, y) =

n∑
i=1

δi(x, y)

E (δi(x, y)) = 0 by definition of δi(x, y), we write

n∑
i=1

(
δ2i (x, y)

)
≤
∑
i=1

E
(
δ2i (x, y)

)
.

Furthermore, by Jensen’s inequality we have

E
(
δ2i (x, y)

)
≤ 1

(nϕn(x, ai))2
E
(
K2
i (x)H

2
i (y)|Fi−1

)
≤ 1

(nϕn(x, ai)2
E
(
K2
i (x)|Fi−1

)
≤ 1

(nϕn(x, ai))2
P (Xi(x, ai)|Fi−1)

≤ 1

(nϕn(x, ai))2
φi(x, ai).

So, we obtain ∑
i=1

E
(
δ2i (x, y)

)
≤
∑n
i=1 φi(x, ai)

n2ϕ2
n(x, ai))

.

We deduce under (H1)(ii) that var
(
F̂N (x, y)− FN (x, y)

)
−→ 0 as n −→∞.

Proof of lemma 4.8
We use the ideas in Laib and Louani For all i = 1, ..., n, we define

η′ni =

(
ϕn(x)

nσ2
f

) 1
2 (
b−1i H ′i(y)− f(y|x)

) Ki(x)

nϕn(x)

and, we define ξ′ni = η′ni − E
(
η′ni |Fi−1

)
.

It is easily seen that (
nϕn(x)

σ2
f

) 1
2

Q̂n,2(x, y) =
1√
n

n∑
i=1

ξ′ni.
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We follow the same idea in the proof of lemma 4.2 to prove this, we establish the following statements:

a) 1
n

n∑
i=1

E
(
ξ
′2
ni|Fi−1

)
−→ 1 in probability,

b) 1
n

n∑
i=1

E
(
ξ
′2
niIξ′2ni>εn

)
−→0 holds for any ε > 0 (Lindeberg condition).

Proof of part (a)

E
(
ξ
′2
ni|Fi−1

)
= E

((
η′ni − E

(
η′ni|Fi−1

))2)
= E

(
η

′2
ni|Fi−1

)
− E2

(
η′ni|Fi−1

)
.

The statement (a) follows then if we show that

(1) lim
n−→∞

1

n

n∑
i=1

E2
(
η′ni|Fi−1

)
= 0 in probability,

(2) lim
n−→∞

1

n

n∑
i=1

E
(
η

′2
ni|Fi−1

)
= 1 in probability.

To prove (1), we put A =
(
nϕn(x)
σ2
f

) 1
2

, we have

E (η′ni|Fi−1) =
A

nϕn(x)
E
((
b−1i H ′i (y)− f (y|x)

)
Ki(x)|Fi−1

)
|E (η′ni|Fi−1)| =

A

nϕn(x)

∣∣E [[(E(b−1i H ′i(y)|Bi−1
)
− f(y|x)

)
Ki(x)

]
|Fi−1

]∣∣
=

A

nϕn(x)

∣∣E [[E(b−1i H ′i(y)|Xi

)
− f(y|x)Ki(x)

]
|Fi−1

]∣∣
under (H1) and (H4), we have

Cφi(x, ai) ≤ E
(
Ki(x)|Fi−1

)
≤ C ′φi(x, ai).

Next, an integration by parts and a change of variable allow to get

E
(
H ′i(y)|Xi

)
= bi

∫
R
H ′(t)f(y − bit|Xi)dt.

Thus, we have∣∣E (H ′i(y)|Xi)− bif(y|x)
∣∣ ≤ C ′aB1

i

combining this results, we have

|E (η′ni|Fi−1)| ≤
A

ϕn(x, ai)
C ′′φi(x, ai)a

β1

i

|E (η′ni|Fi−1)| ≤
(
ϕn(x)

σf

)1/2
φi(x, ai)

ϕn(x, ai)
aiβ1

1

n
(E (η′ni|Fi−1))

2 ≤ a2β1

i

σf

∑n
i=1

(
aβ1

i φi(x, ai)
)2

nϕn(x, ai)
−→ 0 (Under (H3)).
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Now, we have to prove (2), to do this, we observe that

1

n

n∑
i=1

E
(
(η′ni)

2 |Fi−1
)

=
A2

nϕ2
n(x, ai)

n∑
i=1

E
((
b−1i H ′i(y)− f(y|x)

)2
K2
i (x)|Fi−1

)
=

A2

nϕ2
n(x, ai)

n∑
i=1

[
E
(
b−2i K2

i (x)H
′2
i (y)|Fi−1

)
−2f(y|x)E

(
b−1i K2

i (x)H
′
i(y)|Fi−1

)
+ (f(y|x))2 E

(
K2
i (x)|Fi−1

)]
.

We put

I1 =

n∑
i=1

E
(
b−2i K2

i (x)H
′2
i (y)|Fi−1

)
,

I2 =

n∑
i=1

E
(
b−1i K2

i (x)H
′
i(y)|Fi−1

)
,

I3 =

n∑
i=1

E
(
K2
i (x)|Fi−1

)
.

We write

I1 = f(y|x)
n∑
i=1

E
(
K2
i (x)|Fi−1

)
+

n∑
i=1

E
(
b−2i K2

i (x)H
′2
i (y)|Fi−1

)
−f(y|x)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
= f(y|x)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
+

n∑
i=1

E
[
b−2i E

(
H

′2
i (y)|Xi

)
K2
i (x)|Fi−1

]
−f(y|x)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
≤

n∑
i=1

E
[
b−2i E

(
H

′2
i (y)|Xi

)
K2
i (x)|Fi−1

]
− f(y|x)

n∑
i=1

E
(
K2
i (x)|Fi−1

)
using the same argument as those used in proof of the part (1), we have

1

nϕn(x, ai)
I2 = o(1).

For I3, it is the same I3 proved in proof of lemma 4.2 and by the combining this results, we deduce that

lim
n−→∞

n∑
i=1

E
(
η

′2
ni|Fi−1

)
= 1 which complete the proof of part (a).

Proof of part (b)
The Lindeberg condition in which implies that

E
(
ξ
′2
niIξ′ni>εn

)
≤ 4E

(
η

′2
niIη′ni>nε/2

)
.

Let a > 1 and b > 1 such that 1
a + 1

b = 1 making use the Holder’s and Markov’s inequalities one can write
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for all ε > 0

E
(
η

′2
niIη′ni>nε/2

)
≤ E (η′ni)

2a

(nε/2)2a/b
.

TakingC0 ∈ R∗+ and 2a = 2+δ, from some δ > 0, such that E
(
|Yi(y)|2+δ

)
<∞ and E

(
b
−(2+δ)
i |H ′i(y)− F (y|x)|

2+δ |Xi = u
)
=

W 2+δ(u) is a continuous function, we obtain

4E
(
η

′2
niIη′ni>nε

)
≤ C0

(
nϕn(x, ai)

σ2
f

)2+δ
1

(nϕn(x, ai))
2+δ

(∣∣b−1i H ′i(y)− f(y|x)
∣∣2+δK2+δ

i (x)
)

≤ C0

(
nϕn(x, ai)

σ2
f

)2+δ E
(
E
( ∣∣b−1i H ′i(y)− f(y|x)

∣∣2+δK2+δ
i (x)|Xi

))
(nϕn(x, ai))

2+δ

≤ C0

(
nϕn(x, ai)

σ2
f

)2+δ
E
(
K2+δ
i (x)W 2+δ(x)

)(
(ϕn(x, ai))

2+δ
)

≤ C0

(
nϕn(x, ai)

σ2
f

)2+δ
E
(
K2+δ
i (x)

∣∣W 2+δ(x)−W 2+δ(x)
∣∣+ ∣∣W 2+δ(x)

∣∣)E (K2+δ
i (x)

)
(ϕn(x))

2+δ

≤ C0

(
n

σ2
f

)2+δ

E
(
K2+δ
i (x)

) ( ∣∣W 2+δ(x)
∣∣+ o(1)

)
.

Consequently 1
n

n∑
i=1

nE
(
ξ
′2
niIξ′ni>εn

)
−→0 as n −→∞which completes the proof of lemma.

Proof of Lemma 4.9
We have

B̂n,2(x, y) =
fN (y|x)
FD(x)

.

We write∣∣∣B̂n,2(x, y)∣∣∣ =
1

n∑
i=1

E
(
Ki(x)|Fi−1

)
n∑
i=1

[
E
[
Ki(x)E

[
b−1i H ′i(x)|Bi−1

]
|Fi−1

]

− f(y|x)E
(
Ki(x)|Fi−1

)]
=

1
n∑
i=1

E
(
Ki(x)|Fi−1

)
n∑
i=1

[
E
[
Ki(x)E

[
b−1i H ′i(x)|Xi

]
|Fi−1

]

− f(y|x)E
(
Ki(x)|Fi−1

)]
≤ 1

n∑
i=1

E
(
Ki(x)|Fi−1

)
n∑
i=1

[
E
[
Ki(x)E

[
b−1i H ′i(x)|Xi

]
− bif(y|x)|Fi−1

]]
.
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Next, an integration by parts and change of variable allow to get

E
[
H ′i(y)|Xi

]
= bi

∫
R
H ′(t)f(y − bit|Xi)dt

thus, we have∣∣E[b−1i H ′i(y)|Xi

]
− f(y|x)

∣∣ ≤ ∫
R
H ′(t) |F (y − bit|Xi)− f(y|x)| dt. (11)

Under (H2), we obtain that

IB(x,ai)(Xi)
∣∣E[H ′i(y)|Xi

]
− bif(y|x)

∣∣ ≤ Cbi ∫
R
H ′(t)(aβ1

i + |t|β2bβ2

i )dt (12)

and under (H4) we prove that
1

n

n∑
i=1

E
(
Ki(x)|Fi−1

)
= o(1).

We achieve the proof of lemma.
Proof of Lemma 4.10
We write

R̂n,2(x, y) = −B̂n,2(x, y)
(
f̂N (x, y)− fN (x, y)

)
= −

(
fN (x, y)− f(y|x)FD(x, y)

FD(x, y)

)(
f̂N (x, y)− fN (x, y)

)
.

Clearly, it is suffices to show that:

(a)
(
fN (x,y)−f(y|x)FD(x,y)

FD(x,y)

)
= o(1),

(b)
(
f̂N (x, y)− fN (x, y)

)
= o(1).

The proof of the first hand uses arguments similar to those used in the proof of lemma 4.6. Of the second
part, will be established
(i)E

(
f̂N (x, y)− fN (x, y)

)
= 0, V ar

(
f̂N (x, y)− fN (x, y)

)
−→ 0 as n −→∞ For all i = 1, ..., n, we put

δ′i(x, y) =
1

nϕn(x, ai)

[
b−1i Ki(x)H

′
i(y)− E

(
b−1i Ki(x)H

′
i(y)|Fi−1

)]
where δi(x, y) is a triangular array of martingale differences according to the σ−algebra Fi−1 next by
(H1)(ii) and (H4) we obtain

f̂N (x, y)− fN (x, y) =

n∑
i=1

δ′i(x, y)

E (δ′i(x, y)) = 0 by definition of δ′i(x, y),
we write

n∑
i=1

(
δ′2i (x, y)

)
≤
∑
i=1

E
(
δ′2i (x, y)

)
.
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Furthermore, by Jensen’s inequality we have

E
(
δ
′2
i (x, y)

)
≤ 1

(nϕn(x, ai))2
E
(
b−2i K2

i (x)H
′2
i (y)|Fi−1

)
≤ 1

(nϕn(x, ai)2
E
(
b−2i K2

i (x)|Fi−1
)

≤ 1

(nϕn(x, ai))2
P
(
Xi(x, ai)E

(
H

′2
i (y)|Bi−1

)
|Fi−1

)
≤ Cb−1i φi(x, ai)

(nϕn(x, ai))2

so, we obtain ∑
i=1

E
(
δ′2i (x, y)

)
≤
C
∑n
i=1 b

−1
i φi(x, ai)

n2ϕ2
n(x, ai))

.

We deduce that var
(
f̂N (x, y)− fN (x, y)

)
−→ 0 as n −→∞ since (H1)(ii).
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