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Abstract. In this paper we introduce a new family of bivariate discrete distributions on Z2, called the
Rad(α1, α2, θ) class. This new family can be considered as an extension (on Z2) of some standard bivariate
discrete (non negative valued) distributions and it is used to generate bivariate random variables with
possible negative or positive values for the covariance. Some properties of the family are investigated.
Also, a statistical approach is described to estimate the unknown parameters of the family. Finally,
we apply this general family of distributions to the bivariate Poisson and geometric distributions with
simulation studies.

1. Introduction

Paired count observations appear in many situations and research fields. For example, in insurance, one
can be interested in studying the evolution of the number of accidents in a site before and after some new
regulations. Bivariate discrete distributions were introduced to fit such data. Over the last three decades,
a large contribution on discrete bivariate distributions has been accumulated. For a literature review, we
refer to (10), (8), (11), (14), (1), (12), (3), and (15).

In contrast to the well-known situation when the paired data are counts, i.e. observed on N2, sometimes
the data are observed on Z2. For example, when analyzing intra-daily stock prices the changes take both
positive and negative integer values, known also as ticks (the price can go up or down on certain predefined
ranges of value). The price change is therefore characterized by discrete jumps. To the best of our knowledge
there is a shortage of bivariate discrete distribution defined on Z2. See for instance (4) who constructed
bivariate Skellam distributions by a simple trivariate reduction scheme with additive functions. In a recent
article, (5) introduced a family of distributions based on the generalized trivariate (multivariate) reduction
technique and the Rademacher distribubtion. In this paper, we intend to contribute to this literature, by
presenting a new family of bivariate discrete distributions, based also on the Rademacher distribubtion.
This new family, denoted by Rad(α1, α2, θ), is defined on Z2 and with possible negative or positive values
for the covariance. Furthermore, it can be considered as an extension on Z2 of some standard bivariate
distributions such as the Poisson or the geometric.

The remainder of the paper proceeds as follows. Firstly, in Section 2, we present the considered
Rad(α1, α2, θ) family using a couple of independent Rademacher random variables and a bivariate random
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variable with support in N2, and investigate some of its properties. Section 3 describes statistical approach
to estimate the unknown parameters efficiently. Finally, in Section 4, we apply our general distributions to
the bivariate Poisson and Geometric distributions.

2. The Rad(α1, α2, θ) class

First we present the (generalized) Rademacher distribution. We say a random variable R follows the
(generalized) Rademacher distribution with parameter α ∈ (0, 1) denoted by R(α) if and only if

P(R = −1) = 1− α, P(R = 1) = α.

We adopt the notation R ∼ R(α). This distribution is symmetric (around 0) for the special case α = 1/2. It
has many well-known applications in bootstrapping, symmetrization of random variables and random walk
theory. Let us now introduce a new class of distribution in Z2, denoted by Rad(α1, α2, θ) and investigate
some of its basic properties.

Definition 2.1. Let (α1, α2) ∈ (0, 1)2, (X,Y ) be a bivariate random variables with (X,Y )(Ω) ⊆ N2, de-
pending on a parameter or a vector of parameters denoted by θ, and, for any j ∈ {1, 2}, Rj ∼ R(αj). Let
us suppose that R1 and R2 are mutually independent and independent of X and Y . We say that a bivariate
random variable (S, T ) belongs to the Rad(α1, α2, θ) class, if and only if

(S, T ) = (R1X,R2Y ).

Remark 2.2. The Rad(α1, α2, θ) class can be interpreted as the extension to Z2 of the class of bivariate
discrete distributions defined on N2.

Let us now introduce some basic properties of (S, T ):

• The support of (S, T ) is given by (S, T )(Ω) = {(s, t) ∈ Z2; (|s|, |t|) ∈ (X,Y )(Ω)}.

• The distribution of (S, T ) is given by

P({S = s} ∩ {T = t}) =

α
1{s>0}
1 (1− α1)1{s<0}α

1{t>0}
2 (1− α2)1{t<0}P({X = |s|} ∩ {Y = |t|}),

(s, t) ∈ Z2,

where, for any A ⊆ R, 1A = 1A(x) denotes the indicator function on A : 1A = 1 if x ∈ A and 0
elsewhere. Let us remark that, for (s, t) = (0, 0), the powers satisfy : 1{s<0} = 1{s>0} = 1{t<0} =
1{t>0} = 0, so P({S = 0} ∩ {T = 0}) = P({X = 0} ∩ {Y = 0}). Let us now briefly show that the sum
of the joint probability is 1. By using a decomposition according to the sign of s and t and noticing
that α1α2 + (1− α1)α2 + α1(1− α2) + (1− α1)(1− α2) = 1, we have:
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∑
(s,t)∈Z2

P({S = s} ∩ {T = t}) = P({X = 0} ∩ {Y = 0})

+ α2

∑
t>0

P({X = 0} ∩ {Y = t}) + (1− α2)
∑
t<0

P({X = 0} ∩ {Y = −t})

+ α1

∑
s>0

P({X = s} ∩ {Y = 0}) + (1− α1)
∑
s<0

P({X = −s} ∩ {Y = 0})

+ α1α2

∑
s>0

∑
t>0

P({X = s} ∩ {Y = t})

+ (1− α1)α2

∑
s<0

∑
t>0

P({X = −s} ∩ {Y = t})

+ α1(1− α2)
∑
s>0

∑
t<0

P({X = s} ∩ {Y = −t})

+ (1− α1)(1− α2)
∑
s<0

∑
t<0

P({X = −s} ∩ {Y = −t})

= P({X = 0} ∩ {Y = 0}) +
∑
t>0

P({X = 0} ∩ {Y = t})

+
∑
s>0

P({X = s} ∩ {Y = 0}) +
∑
s>0

∑
t>0

P({X = s} ∩ {Y = t}) = 1.

• The marginal distributions are given by

P (S = s) = α
1{s>0}
1 (1− α1)1{s<0}P (X = |s|) , s ∈ Z,

and

P (T = t) = α
1{t>0}
2 (1− α2)1{t<0}P (Y = |t|) , t ∈ Z.

• The conditional distributions are given by

P ({S = s} | {T = t}) = α
1{s>0}
1 (1− α1)1{s<0}P ({X = |s|} | {Y = |t|}) ,

(s, t) ∈ Z2, and

P ({T = t} | {S = s}) = α
1{t>0}
2 (1− α2)1{t<0}P ({Y = |t|} | {X = |s|}) ,

(s, t) ∈ Z2.

• Moreover, since Rn1 = 1 if n is even and Rn1 = R1 if n is odd, with the analog for R2, using the
independance between R1, R2 and (X,Y ), we have

E(SnTm) = E(Rn1X
nRm2 Y

m) = E(Rn1 )E(Rm2 )E(XnY m)

=


E(XnY m) if (n is even, m even),

E(R1)E(XnY m) if (n is odd, m even),

E(R2)E(XnY m) if (n is even, m odd),

E(R1)E(R2)E(XnY m) if (n is odd, m odd),

=


E(XnY m) if (n is even, m even),

(2α1 − 1)E(XnY m) if (n is odd, m even),

(2α2 − 1)E(XnY m) if (n is even, m odd),

(2α1 − 1)(2α2 − 1)E(XnY m) if (n is odd, m odd).
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Putting n = 0 or m = 0, we immediately obtain

E(Sm) =

{
E(Xm) if m even,

(2α1 − 1)E(Xm) if m odd,

and

E(Tm) =

{
E(Y m) if m even,

(2α2 − 1)E(Y m) if m odd.

• The covariance of S and T is given by

C(S, T ) = (2α1 − 1)(2α2 − 1)C(X,Y ),

where C(X,Y ) denotes the covariance of X and Y .

Remark 2.3. Note that C(S, T ) can be positive or negative according to the values of (α1, α2).

• The correlation of S and T is given by

ρ(S, T ) =
(2α1 − 1)(2α2 − 1)C(X,Y )√

E(X2)− (2α1 − 1)2(E(X))2
√

E(Y 2)− (2α2 − 1)2(E(Y ))2
.

• The characteristic function of (S, T ) is given by

φ∗(s, t) = E(eisSeitT )

= α1α2φ(s, t) + (1− α1)α2φ(−s, t) + α1(1− α2)φ(s,−t)
+ (1− α1)(1− α2)φ(−s,−t), (s, t) ∈ R2,

where φ(x, y) = E(eixXeiyY ) denotes the characteristic function of (X,Y ).

3. Parameter estimation

From the general definition of the Rad(α1, α2, θ) class, we are able to determine the Maximum Likelihood
estimator (MLE) of the unknown parameters. The details are given below.

Let θ = (θ1, . . . , θm) be the vector of unknown parameters in (X,Y ) and υ = (α1, α2, θ). For any
(s, t) = ((s1, t1), . . . , (sn, tn)) with (si, ti) ∈ Z2, the likelihood function associated to (S, T ) is given by

Lυ(s, t) =

n∏
i=1

P({S = si} ∩ {T = ti}) =

α
∑n

i=1 1{si>0}
1 (1− α1)

∑n
i=1 1{si<0}α

∑n
i=1 1{ti>0}

2 (1− α2)
∑n

i=1 1{si<0}L̃θ(|s|, |t|),

where L̃θ denotes the likelihood function associated to (X,Y ). The log-likelihood function is given by

`υ(s, t) = lnLυ(s, t) =

ln(α1)

n∑
i=1

1{si>0} + ln(1− α1)

n∑
i=1

1{si<0} + ln(α2)

n∑
i=1

1{ti>0}

+ ln(1− α2)

n∑
i=1

1{si<0} + ˜̀
θ(|s|, |t|),

where ˜̀
θ is the log-likelihood function associated to (X,Y ).
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We have

∂`υ
∂α1

(s, t) =
1

α1

n∑
i=1

1{si>0} −
1

1− α1

n∑
i=1

1{si<0}.

Hence
∂`υ
∂α1

(s, t) = 0⇔ α1 =

∑n
i=1 1{si>0}

n−
∑n
i=1 1{si=0}

and this value is a maximum for α1 → `θ(s, t).
Then the MLE of α1 and α2 are given by

α̂1 =

∑n
i=1 1{Si>0}

n−
∑n
i=1 1{Si=0}

(1)

and

α̂2 =

∑n
i=1 1{Ti>0}

n−
∑n
i=1 1{Ti=0}

. (2)

On the other hand, since |S| = X and |T | = Y and

∂`υ
∂θi

(s, t) =
∂ ˜̀
θ

∂θi
(|s|, |t|),

the MLE of θ have the same definitions of those associated to (X,Y ) but defined with (|S1|, |T1|), . . . , (|Sn|, |Tn|)
instead of (X1, Y1), . . . , (Xn, Yn).

4. Applications to bivariate case of Poisson and geometric distribution

In this section, we apply our general family of distributions to the bivariate Poisson and geometric
distributions. We then obtain two new bivariate distributions on Z2 having possible negative or positive
values for the covariance function.

4.1. Application to the bivariate Poisson distribution

The bivariate Poisson distribution is one of the most famous bivariate discrete distributions. It is define
as follows. Let (λ0, λ1, λ2) ∈ (0,∞)3 be three parameters and U0, U1 and U2 be three independent random
variables such that, for any j ∈ {0, 1, 2}, Uj ∼ P(λj), i.e.

P(Uj = u) = e−λj
λuj
u!
, u ∈ N.

Let us now consider the two random variables:

X = U1 + U0, Y = U2 + U0.

We say thus that (X,Y ) follows a bivariate Poisson distribution. Thus, the probability mass function of
(X,Y ) is given by

P ({X = x} ∩ {Y = y}) = e−(λ0+λ1+λ2)
λx1
x!

λy2
y!

min(x,y)∑
i=0

(
x

i

)(
y

i

)
i!

(
λ0
λ1λ2

)i
,

(x, y) ∈ N2.

Note that
X ∼ P(λ1 + λ0), Y ∼ P(λ2 + λ0), C(X,Y ) = V(U0) = λ0.
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For a comprehensive treatment of the bivariate Poisson distribution and its multivariate extensions see
(10), and (8). Set now

(S, T ) = (R1X,R2Y ), (3)

with Rj ∼ R(αj), for any j ∈ {1, 2}. Moreover, we suppose that R1 and R2 are mutually independent and
independent of X and Y .

Plot of a special case of the joint probability of (S, T ) is given by Figure 1. Figures 2 and 3 give bivariate
plots that illustrate positive and negative correlations for this distribution.

Let us now investigate the estimation of the unknown parameters (α1, α2, λ0, λ1, λ2) from a n-sample
(S1, T1), . . . , (Sn, Tn) via two estimation methods: the method of moments and the MLE.

Method of moments. Let θ1 = λ1 + λ0. Observe that

E(S2) = θ21 + θ1 ⇔ θ1 =

√
1 + 4E(S2)− 1

2

which yields the following estimator:

θ̂1 =

√
1 + 4S2 − 1

2
, S2 =

1

n

n∑
i=1

S2
i .

Since

E(S) = (2α1 − 1)θ1 ⇔ α1 =
1

2

(
E(S)

θ1
+ 1

)
an estimator for α1 is

α̂1 =
1

2

(
S

θ̂1
+ 1

)
, S =

1

n

n∑
i=1

Si.

Let θ2 = λ2 + λ0. Hence, using similar arguments, we have

θ̂2 =

√
1 + 4T 2 − 1

2
, T 2 =

1

n

n∑
i=1

T 2
i

and

α̂2 =
1

2

(
T

θ̂2
+ 1

)
, T =

1

n

n∑
i=1

Ti.

Let us now investigate the estimators of λj with j ∈ {0, 1, 2}. Observe that

P ({S = 0} ∩ {T = 0}) = e−(λ1+λ2+λ0),

P(S = 0) = e−(λ1+λ0), P(T = 0) = e−(λ2+λ0).

Therefore natural estimators for λ1, λ2 and λ0 are respectively given by

λ̂1 = − log

(∑n
i=1 1{(Si,Ti)=(0,0)}∑n

i=1 1{Ti=0}

)
,

λ̂2 = − log

(∑n
i=1 1{(Si,Ti)=(0,0)}∑n

i=1 1{Si=0}

)
and

λ̂0 = − log

(∑n
i=1 1{(Si,Ti)=(0,0)}

ne−(λ̂1+λ̂2)

)
.

MLE. The MLE of α1 (resp. α2) are given by (1) (resp. (2)). To calculate the MLE of λ = (λ0, λ1, λ2) we
use the EM-algorithm for the bivariate Poisson models, originally proposed by (9).

Remark 4.1. Note that, (7) showed the asymptotic property of MLE for the bivariate Poisson distribution.
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Parameter actual value Mean (MM) Sd (MM) Mean (ML) Sd (ML)
α1 0.4 0.3998928 0.01849841 0.3999116 0.01739304
α2 0.7 0.6994876 0.01677994 0.7001840 0.0145807
λ0 1 0.9731342 0.18982206 0.9989756 0.06292195
λ1 1 1.0313487 0.19963600 1.0006694 0.06299054
λ2 2 2.0355057 0.23531690 1.9981334 0.07110126

Table 1: Parametric estimation of the unknown parameters (α1, α2, λ0, λ1, λ2) from the distribution of (3) (using the Poisson
distributions) via the MM and MLE.

A short simulation experiment

We simulate n = 1000 observations of (S, T ) (where (X,Y ) follows a bivariate Poisson distribution) and
we compute both moment method (MM) and maximum likelihood (ML) estimators. After 1000 independent
replications, we calculate the average and the standard deviation of the sequence of the obtained estimates.
Results are summarized in Table 1.

One can see from Table 1 that the ML estimation gives a smaller standard deviation than the MM
estimation for all parameters. Fitting to a Gaussian distribution is illustrated in Figure 7, for the ML
estimator, showing its good asymptotic normality properties.

4.2. Application to the bivariate geometric distribution

Let (p0, p1, p2) ∈ (0, 1)3 be three parameters and U0, U1 and U2 be three independent random variables
such that, for any j ∈ {0, 1, 2}, Uj ∼ G0(pj), i.e.

P(Uj = u) = pjq
u
j , u ∈ N,

where qj = 1− pj . Let now
X = U1 + U0, Y = U2 + U0.

Thus, one can say that (X,Y ) follows a bivariate Geometric distribution (modified in 0). Then, the proba-
bility mass function of (X,Y ) is given by

P ({X = x} ∩ {Y = y}) = (p0p1p2)qx1 q
y
2

min{x,y}∑
k=0

(
q0
q1q2

)k
, (x, y) ∈ N2.

Remark that

• for any x ∈ N and y ∈ N,

P(X = x) =
p1p0
q0 − q1

(qx+1
0 − qx+1

1 ), P(Y = y) =
p2p0
q0 − q2

(qy+1
0 − qy+1

2 ).

• we have
C(X,Y ) = V(U0) =

q0
p20
.

For a comprehensive treatment of the bivariate geometric distribution, we refer to (13), (2), and (6). Set
now

(S, T ) = (R1X,R2Y ), (4)

with Rj ∼ R(αj), for any j ∈ {1, 2}. Moreover, we suppose that R1 and R2 are mutually independent and
independent of X and Y .

Plot of a special case of the joint probability of (S, T ) is given by Figure 4. Figures 5 and 6 give bivariate
plots that illustrate positive and negative correlations for this distribution.

Let us now investigate the estimation of the unknown parameters (α1, α2, p0, p1, p2) from a n-sample
(S1, T1), . . . , (Sn, Tn) via two estimation methods : the method of moments and the MLE.
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Parameter actual value Mean (MM) Sd (MM) Mean (ML) Sd (ML)
α1 0.1 0.09994431 0.027364810 0.10058339 0.010938576
α2 0.6 0.59918124 0.021549369 0.59987719 0.016319864
p0 0.3 0.29942310 0.01728777 0.29933596 0.008043778
p1 0.8 0.80401244 0.037735241 0.80076329 0.015544756
p2 0.4 0.39954472 0.032864295 0.39998300 0.010265953

Table 2: Parametric estimation of the unknown parameters (α1, α2, p0, p1, p2) from the distribution of (4) (using the geometric
distributions) via the MM and MLE.

Method of moments. One can observe that

P ({S = 0} ∩ {T = 0}) = p0p1p2, P(S = 0) = p0p1, P(T = 0) = p0p2.

Natural estimators for p1, p2 and p0 are respectively given by

p̂1 =

∑n
i=1 1{(Si,Ti)=(0,0)}∑n

i=1 1{Ti=0}
, p̂2 =

∑n
i=1 1{(Si,Ti)=(0,0)}∑n

i=1 1{Si=0}

and

p̂0 =

∑n
i=1 1{(Si,Ti)=(0,0)}

np̂1p̂2
.

Now remark that

E(S) = (2α1 − 1)

(
q1
p1

+
q0
p0

)
, E(T) = (2α2 − 1)

(
q2
p2

+
q0
p0

)
.

Therefore natural estimators for α1 and α2 are respectively given by

α̂1 =
1

2

(
p̂1 + p̂0 − (2− S)p̂1p̂0

p̂1 + p̂0 − 2p̂1p̂0

)
and

α̂2 =
1

2

(
p̂2 + p̂0 − (2− T )p̂2p̂0

p̂2 + p̂0 − 2p̂2p̂0

)
,

where

S =
1

n

n∑
i=1

Si, T =
1

n

n∑
i=1

Ti.

MLE. The MLE of α1 and α2 are given by (1) and (2). To calculate the MLE of λ = (λ0, λ1, λ2), it
suffices to program a function that calculates the MLE of a bivariate Geometric distribution, which is
straightforward with standard statistical packages.

A short simulation experiment

We simulate n = 1000 observations of (S, T ) (where (X,Y ) follows a bivariate Geometric distribution)
and we compute both moment method (MM) and maximum likelihood (ML) estimators. After 1000 inde-
pendent replications, we calculate the average and the standard deviation of the sequence of the estimates
obtained. Outputs of this simulation are reported in Table 2.

Remark that from Table 2 the ML estimation gives a smaller standard deviation than the MM estimation
for all parameters. Fitting to a Gaussian distribution is illustrated in Figure 8, for the ML estimator. The
good fits illustrate nice asymptotic normality properties of the considered estimator.
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Figures

Figure 1: Plot of the joint probability of (S, T ) from the Rad(α1, α2, θ) class when (X,Y ) follows the bivariate Poisson
distribution, with α1 = 0.5, α2 = 0.33, λ0 = 1, λ1 = 2 and λ2 = 3.
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Figure 2: Bivariate plot of a sample (s, t) of length 100 of (S, T ) from the Rad(α1, α2, θ) class when (X,Y ) follows the bivariate
Poisson distribution, with α1 = 0.9, α2 = 0.1, λ0 = 1, λ1 = 0.6 and λ2 = 3 ; negative correlation of −0.204911.
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Figure 3: Bivariate plot of a sample (s, t) of length 100 of (S, T ) from the Rad(α1, α2, θ) class when (X,Y ) follows the bivariate
Poisson distribution, with α1 = 0.7, α2 = 0.9, λ0 = 2, λ1 = 1.6 and λ2 = 3 ; positive correlation of 0.230737.

Figure 4: Plot of the joint probability of (S, T ) from Rad(α1, α2, θ) class when (X,Y ) follows the bivariate Geometric distri-
bution with α1 = 0.5, α2 = 0.33, p0 = 0.5, p1 = 0.33 and p2 = 0.25.
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Figure 5: Bivariate plot of a sample (s, t) of length 100 of (S, T ) from the Rad(α1, α2, θ) class when (X,Y ) follows the bivariate
Geometric distribution with α1 = 0.9, α2 = 0.1, p0 = 0.1, p1 = 0.6 and p2 = 0.3 ; negative correlation of −0.66291.
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Figure 6: Bivariate plot of a sample (s, t) of length 100 of (S, T ) from the Rad(α1, α2, θ) class when (X,Y ) follows the bivariate
Geometric distribution with α1 = 0.7, α2 = 0.8, p0 = 0.4, p1 = 0.6 and p2 = 0.9 ; positive correlation of 0.470974.
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Figure 7: Normal Q-Q plots for the errors (ML estimator), when (X,Y ) follows bivariate Poisson distribution and n = 1000.

(a) Normal Q-Q plots of α̂1 − α1. (b) Normal Q-Q plots of α̂2 − α2. (c) Normal Q-Q plots of λ̂0 − λ0. (d) Normal Q-Q plots

of λ̂1 − λ1. (e) Normal Q-Q plots of λ̂2 − λ2.
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Figure 8: Normal Q-Q plots for the errors (ML estimator), when (X,Y ) follows bivariate Geometric distribution and n = 1000.
(a) Normal Q-Q plots of α̂1 − α1. (b) Normal Q-Q plots of α̂2 − α2. (c) Normal Q-Q plots of p̂0 − p0. (d) Normal Q-Q plots
of p̂1 − p1. (e) Normal Q-Q plots of p̂2 − p2.


