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Abstract. New distributions arise in literature when the existing ones become inadequate to model
emerging situations. Zero-inflated discrete distributions are such examples. These have found fruitful ap-
plications in many real life situations in the recent past. Especially there is a sudden surge of applications
of these distributions in count regression models.

1. Introduction

Let p1(x, θ) be a probability mass function (pmf) with the support on the set of nonnegative integers
and p0(x) be the pmf of a distribution degenerate at 0. Here θ may be real or a vector. If a random variable
X has the pmf given by

p(x, θ, ϕ) =

{
ϕ+ (1− ϕ)p1(x, θ), x = 0

(1− ϕ)p1(x, θ), x = 1, 2, 3,. . .
(1)

where 0 < ϕ < 1, then X has a zero-inflated distribution. Note that p(x, θ, ϕ) = ϕp0(x) + (1− ϕ)p1(x, θ) is
a mixture of p0(x) and p1(x, θ).

If p1(x, θ) is the pmf of a binomial distribution then X is said to have a zero-inflated binomial distribu-
tion. Similarly, we have zero-inflated Poisson and zero-inflated negative binomial distributions. Also, let us
denote that X ∼ ZIB(n, p, ϕ) or X ∼ ZIP (θ, ϕ) or X ∼ ZINB(r, p, ϕ) according as p1(x, θ) is the pmf of
binomial (n, p) or Poisson (θ) or negative binomial (r, p) distribution.

If a random variable X has the pmf specified in (1) with p1(x, θ) = a(x)θx

g(θ) , x ∈ N , θ > 0 where

N = {0, 1, 2, ...}, then X is said to have a zero-inflated power series distribution. It is well known that
binomial, Poisson, and negative binomial are particular cases of power series distribution.

Zero-inflated models are appropriate for data sets with excess zeros. Lambert (1992) has discussed the
relevance of zero-inflated Poisson model in the context of a manufacturing process. If the manufactur-
ing equipment is properly calibrated, the defects may be nearly impossible. On the other hand, when it
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is miscalibrated, the defects may occur according to a Poisson law. Hence the number of defects of the
manufacturing process follows a zero-inflated Poisson model. Also, Xie and Goh (1993) have shown that
a zero-inflated Poisson model is more appropriate than the regular Poisson model for a near zero-defect
manufacturing environment.

Zero-inflated models have been found appropriate for insurance claim count data too. If a general in-
surance policy is under the usual detectable agreement, a claim will not be recorded and honored unless
the loss exceeds a prescribed detectable limit. Also, under the no claim discount, which is widely adopted
by the automoblie insurance, the policy holders may seldom claim if their losses are small. These lead to
excess zero claims. Yip and Yau (2005) have used ZIP and ZINB distributions to model insurance claim
count data having excess zeros. Further, they have adopted Pearson’s χ2 statistic, Akaike information and
Bayesian information criteria for testing goodness of fit and model selection.

In insurance, the hunger for bonus is a well known phenomenon. Under this phenomenon, the insureds
do not report all of their losses in order to gain their bonus for next year’s premiums. Boucher et al. (2009)
have employed zero-inflated distribuitions to model insurance panel count data. They have also illustrated
zero-inflated models based on the data on the claims reported to a Spanish insurance company.

Nanjundan (2011) has characterized a subfamily of power series distributions through a differential equa-
tion satisfied by the probability generating functions (pgfs) of the distributions. Nanjundan and Sadiq Pasha
(2015a, 2015b) have characterized zero-inflated Poisson and zero-inflated binomial distributions through a
linear differential equation. Along the same lines, Suresh et al (2015) have identified a linear differential
equation that characterizes the zero-inflated negative binomial distribution.

A subfamily of zero-inflated discrete distributions is characterized in this paper by a linear differential
equation. Let f(s), 0 ≤ s ≤ 1, denote the pgf of X. It can be readily seen that when
(i) X ∼ ZIB(n, p, ϕ), f(s) = ϕ+ (1− ϕ)(q + ps)n,
(ii) X ∼ ZIP (θ, ϕ), f(s) = ϕ+ (1− ϕ)eθ(s−1), and

(iii)X ∼ ZINB(r, p, ϕ), f(s) = ϕ+ (1− ϕ) pr

(1−qs)r .

2. Characterization

The following theorem characterizes a subfamily of zero-inflated power series distributions.

Theorem 2.1. Let X be a nonnegative integer valued random variable with P (X = k) = pk, k = 0, 1, 2, ...
and pk > 0 at least for k = 0, 1. The pgf f(s) of X satisfies

f(s) = a+ b(c+ ds)f
′
(s) (2)

where 0 < a < 1, b, c, d are constants and f
′
(s) is the first derivative of f(s), if and only if the distribution

of X is zero-inflated-Poisson, binomial, or negative binomial.

Proof. It is straight forward to verify that the pgfs of these zero-inflated distributions satisfy (2).

i) If X ∼ ZIP (θ, ϕ), then its pgf f(s) satisfies (2) with a = ϕ, b = 1/θ, c = 1, and d = 0.

ii) When X ∼ ZIB(n, p, ϕ), then its pgf f(s) satisfies (2) with a = ϕ, b = 1/np, c = q, and d = p.

iii) If X ∼ ZINB(r, p, ϕ), then its pgf f(s) satisfies (2) with a = ϕ, b = 1/rq, c = 1, d = −q.

Suppose that the pgf f(s) of X satisfies the linear differential equation specified in (2). Now let us have a
close look at the possible values of b, c, d and their consequences.

1) If b = 0, then we get f(s) = a, ∀s ∈ [0, 1]. Hence f(1) = 1 = a, which is not possible because
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0 < a < 1. Therefore b 6= 0.

2) Let b 6= 0 and c = 0, then (2) reduces to f(s) = a + bdsf ′(s), ∀s ∈ [0, 1]. We get f ′(s) = f(s)−a
bds

and f ′(0) = p1 =∞, which is not admitted. Hence c 6= 0.

3) Let b, c 6= 0. If d = 0, then (2) becomes f(s) = a+ bcsf ′(s), 0 ≤ s ≤ 1.

The solution of this linear differential equation is given by

f(s) = a+ ke
s
bc , o ≤ s ≤ 1,

where k is an arbitrary constant. Since f(1) = 1, a+ke
1
bc = 1. This implies that k = (1−a)e

−1
bc . Therefore,

f(s) = a+ (1− a)e
1
bc (s−1), 0 ≤ s ≤ 1. If bc < 0, then f(0) = p0 > 1 which is not possible and hence bc > 0.

Hence X has the pgf of ZIP ∼ ( 1
bc , a).

4) Let b 6= 0, c 6= 0, d 6= 0, then by solving the differential equation (2), we get f(s) = a+ k(c+ ds)
1
bd , 0 ≤

s ≤ 1, where k is an arbitrary constant. Since f(1) = a + k(c + d)
1
bd = 1, we get k = (1 − a) 1

(c+d)
1
bd

.

Therefore f(s) = a+ (1− a)( c+dsc+d )
1
bd . If c+ d = 0, then f(s) does not define a pgf. Hence c+ d 6= 0.

Further, (2) can be expressed as

f(s) = a+ (1− a)(c∗ + d∗s)
1
bd , (3)

where c∗ = c
c+d , d∗ = d

c+d , and c∗ + d∗ = 1. Since 0 < a < 1 and 0 < f(0) = a + (1 − a)(c∗)
1
bd = po < 1,

0 < c∗ < 1 and hence 0 < d∗ < 1. In turn c, d > 0. Thus case (4) reduces to b 6= 0 and c, d > 0.

4a) Let c, d > 0 and b > 0. Take 1
bd = N > 0 to be an integer. Then,

f(s) = a+ (1− a)(c∗ + d∗s)N ,

which is the pgf of ZIB(N, d∗, a).

4b) Let c, d > 0 and b < 0. Take 1
bd = N < 0 to be an integer. Then, f(s) turns out to be the pgf

of ZINB(N, c∗, a).

Now it remains to verify whether 1
bd can be a fraction with b 6= 0. Note that f(s) in (3) can be expressed as

f(s) = a+ (1− a)(c∗)
1
bd (1 +

d∗

c∗
s)

1
bd . (4)

The expansion of the factor (1 + d∗

c∗ s)
1
bd in the RHS of (4) is a power series in s with some terms being

negative when 1
bd is a fraction. Since (1 + d∗

c∗ s)
1
bd is a part of a pgf, 1

bd cannot be a fraction. This completes
the proof of the theorem.

Acknowledgments

The authors are very grateful to Dr. R. Vasudeva and anonymous referee for their fruitful suggestions.

References

Boucher, J. P., Denuit, M., and Guillen, M. (2009). Number of accidents or number of claims? An approach with zero-inflated
Poisson models for panel data, The Journal of Risk and Insurance, Vol. 76, No. 4, 821 - 846.



Nanjundan and Pasha / ProbStat Forum, Volume 11, April 2018, Pages 77–80 80

Lambert, D. (1992). Zero-inflated Poisson regression with an application to defects in manufacturing, Technometrics, Vol. 34,
No. 1, 1 - 14.

Nagesh, S., Nanjundan, G., Suresh, R., and Sadiq Pasha (2015). A characterization of zero-inflated geometric model, Int.
Journal of Mathematics Trends and Technology, Vol. 23, No. 1, 71 - 73.

Nanjundan, G. (2011). A characterization of the members of a subfamily of power series distributions, Applied Mathematics,
Vol. 2, 750 - 51.

Nanjundan, G. and Sadiq Pasha (2015a). A note on the characterization of zero-inflated Poisson distribution, Open Journal of
Statistics, Vol. 5, 140 - 142.

Nanjundan, G. and Sadiq Pasha (2015b). A characterization of zero-inflated binomial model, Int. Journal of Mathematics and
Computer Research, Vol. 3, No. 11, 1187 - 1190.

Suresh, R., Nagesh, S., Nanjundan G., and Sadiq Pasha (2015).On a characterization of a zero-inflated negative binomial
distribution, Open Journal of Statistics, Vol. 5, 511 - 513.

Xie, M. and Goh, T. N. (1993). SPC of a near zero-defect process subject to random shocks, Quality and Reliability Engineering
International, Vol. 9, 89 - 93.

Yip, K. C. H. and Yau, K. K. W. (2005). On modeling claim frequency data in general insurance with extra zeros, Insurance:
Mathematics and Economics, Elsevier, Vol. 36, 153 - 163.


