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Abstract. Multi-state systems have been widely applied in engineering in recent times. Power gen-
erating and supply systems, communication systems, transportation systems etc are modeled by using
Multi-State Systems (MSS). In this article we propose a technique based on Lz transform method, avoid-
ing the curse of dimensionality of stochastic process approach which is often used for the reliability
analysis of MSS. This method can drastically minimize the computational burden for dynamic reliability
assessment of repairable multi state system assuming variable failure rates and repair rates of components
of the system. We illustrate this method for the availability evaluation of a power station based on a real
data set.

1. Introduction

In the usual binary reliability models we assume the system and its components to be either in a perfectly
functioning state or in a completely down state. However this assumption may not be adequate in several
real life situations. There are intermediate states between perfectly functioning state and completely failed
state. Hence Multi State System (MSS) reliability models where the system may rather have more than two
states of performance between perfect working and complete failure, have been more realistically used. Such
systems can conduct their task with partial performance. Failures of some system elements lead only to the
lowering of system performance. The basic concept and further developments of binary system reliability
theory were dealt in [1], [2]. The basic concepts of MSS, tools for MSS reliability assessment and optimization
and application problems were discussed in [8]. Multi state with degrading components and the reliability
evaluation of large systems were emphasized in [6]. A comprehensive exposition of system reliability theory
has been presented in [12].

Generally stochastic process method is used for evaluating the MSS reliability measures. Disadvantage
of this method is that the stochastic process models are very difficult for application to real world MSS
consisting of many elements with many states. During recent years a specific approach named ” Universal
Generating Function (UGF)” procedure has been used in MSS reliability analysis [7], [8]. This approach
was introduced by Ushakov [14], [15]. UGF technique is essentially based on moment generating functions
and it is a mathematical concept for random variables. UGF plays a crucial role in the steady state analysis
of MSS. For a Discrete State Continuous Time (DSCT) Markov process a special transform called ” Lz
transform” which is an extension of UGF technique is introduced [10]. Multi state models are extensively
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used in the field of power system reliability analysis [3]. Lz transform method is suggested [10, p.79-85]
for dynamic reliability analysis of some MSS. In [4] Lz transform method is applied to dynamic reliability
analysis of some MSS. Lz transform method has been demonstrated in [11] for short term evaluation of a
power generating system and several important indices of the system have been evaluated. An instantaneous
availability model for multi state repairable system with common bus performance sharing has been proposed
in [5]. In this paper the idea used in [5] and [11] have been adapted and employed in the case of a power
generating system of n components of multiple states connected in parallel.

Evidently total output of the system in the above power generating system model is equal to the sum
of the output of the individual components. We determine Lz transform for each individual element after
solving differential equations for Markov model of each system element in order to obtain state probabilities
as functions of time. By using Ushakov’s UGF we get Lz transform for the entire system output and also
determine the reliability measures of corresponding power system. Application of this approach on power
system reliability analysis is illustrated by a numerical example. On these lines six sections in this paper
are developed and presented.

2. Model Description

Assumptions

1. The power generating system may have many levels of degradation which vary from perfect functioning
to complete failure.

The system might fail from any 'up’ state to its ’down’ states and it is minimally repaired.

The components of the system might fail independently and they are operated on continuous basis.
The components of the system can be repaired independently.

The Failure rates and repair rates from one state to other state are varying for each component of the
system.

Sl Lo

Consider a system with n components each having 1,2,...k; states where k; is the best functioning state
and 1 is the worst state. The state space of the component of the system is
S ={1,2,..k;}.

3. Methodology

Consider a power station with n generators , having states ki, ko, ..., k,, respectively. Markov model of
whole power station will have ki X kg X ... X k,, states. This model can be analysed for finding reliability
indices of the power station. If conventional stochastic process approach [8] is applied, it will require huge
effort even for relatively small n and k;,j = 1,2,...,n. UGF technique can be applied for avoiding this
dimension- damnation problem. Now UGF being defined for random variables, one needs to consider only
the steady state behaviour of the power system. Here Lz transform method is applied for finding reliability
indices for short term reliability evaluation of a power station consisting of numerous different generating
units.

Consider a discrete state continuous time (DSCT) Markov process X (¢) € {z1,22...2;} which has k
possible states 4, (¢ = 1,2... k) where performance level associated with state 7 is ;.

This Markov process is completely defined by set of possible states X = {x1,z2...2%}, transition
intensities matrix A = (a;;(t)), 4,j = 1,2...k and probability distribution of initial states. Probability
distribution of initial states is represented by corresponding set

po = [p1o = Pr{X(0) = 21}, p20 = Pr{X(0) = 22},
......... pro = Pr{X(0) = zx}].
In general case j* component of a power generating system (j € {1,2...n}) have k; different states

corresponding to different performances. It is represented by the set g; = {g;1, gj2, . .. gjx; } Where gj; is the
performance level of component j in the state ¢, (i € {1,2...k;} and j € {1,2...n}).
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According to [10] Lz transform of a DSCT Markov process X(t) is a function defined as follows

k
LAX(1)} = Zpi(t)zg" (1)

where p;(t) is a probability that the process is in state i at time instant ¢ > 0 for a given initial states
probability distribution pg and z in general case is a complex variable.

At first stage a Markov model should be constructed for each multi state element in MSS. Solving the
following system of linear differential equation of j** component [13].

Spin(0) = an(Opa(0) + anWpe(®) + ..
+aik, (£)pjx; (t)

@ pyalt) = (D (1) + anO)pat) + ..
+ask, (t)pjk; (1)

%pjkj (t) = ag;1(t)pj1(t) + ag;2(H)pja(t) + . ..
+ak;k,; (H)pjk, (1)

under the given initial conditions py = {p10,p20...Pr,;0} We get the probabilities pj;;(t),i = 1.2..k;,7 =
1,2, ...n The individual Lz transform for each component j can be obtained by the formula

k;

Lz{G;(t)} =) Pu(t)z%,j =1,2..n (2)

i=1

Lz transform of whole MSS can be obtained based on Lz transform for each component and system
structure function f. By applying Ushakov’s operator €1y over all Lz transform of individual elements we
get the resulting Lz transform, Lz{G(¢)} [10] linked with output performance stochastic process G(t) of the
whole MSS. Employing Ushakov’s Universal Generating Operator (UGO) to all individual Lz transforms
Lz{G,(t)} over all time point ¢ > 0 we can obtain

LAG)} = Q{Lz{G1(D)}, Lz{G2(D)}, ... L{Gn(t) }} (3)

Ushakov’s operator is well defined for many different structure functions f [9]. By using technique of Lz
transform we can drastically minimize computational burden and Lz{G(t)} is associated with the output
performance of the entire MSS. Multi state system reliability measure can be obtained from the resulting
Lz transform Lz{G(t)}, as summarized in the next section.

4. System Reliability Measures

If Lz-transform

K

LAG} =) pu(t)=* (4)

k=1

of the entire MSS’s output stochastic process

G(t) € {g1,92,- - gk} is known, then important system reliability measures (Ref. [5]) can be easily obtained.
The power station availability for demand level w is defined as system ability to provide power supply to

consumers with summarized load w. That is, the power station should be in states with generating capacity

more or equal w.
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Therefore the system availability for the constant demand w at instant ¢ > 0 is given by

Aw(t) = Z pk(t)' (5)

grZ>w

In order to find MSS instantaneous availability we should summarize all probabilities in Lz transform from
terms where powers of z are greater or equal to demand w.
Loss of Load probability (LOLP,,) for a given level w is then obtained as

LOLP,(t) =1— Ay(t). (6)
The expected generating capacity deficiency (ECD,,) of the system is given by

K
ECDy(t) =Y pe(t)(w = 1) (w—gy) (7)
k=1

where

w—gK T

1 ifw—gr >0
0 ifw—gr <0

Reliability measures for a power system depend strongly on initial states of units.

5. Availability Evaluation of a power station with six generating units connected in parallel

In this section we apply the methods presented in the foregoing section to carry out the availability anal-
ysis based on the data collected from Kuttiady Hydro Electric Project, governed by Kerala State Electricity
Board(KSEB) under Govt. of Kerala, located at Kakkayam, Kozhikode district. With an installed capacity
75 MW (3 generators each with 25 MW) the Kuttiady power station was commissioned on 30-09-1972. The
next generator with installed capacity 50MW was commissioned on 27-01-2001. Last two generators with
installed capacity each 50 MW were commissioned on 30-10-2010 and 10-11-2010. Six generating units are
connected parallel ie, total output of the system is equal to the sum of the output of the the generating units.
Total capacity of the power station is 225MW. The generation of the power station is controlled by state
Load Despatch Centre, a functional unit of KSEB, which is the apex body to ensure integrated operation
of the power system in Kerala. According to the centre the production of generators are categorized into
three - either in full generation mode or half generation mode or zero generation mode. In our Markov
model transitions of states occur due to failures and repairs. The states and outputs of Generator 1,2, and
3 (G1,G2 and G3) are 1(0 MW), 2(12.5 MW)and 3(25 MW). States and outputs of Generator 4,5 and 6
(G4, G5 and G6) are 1(0 MW), 2(25 MW)and 3(50 MW).

Following the terminology used earlier, in this case we have a Markov model and we shall apply the Lz
transform technique to evaluate the availability of the power system.

Transition intensities a;; drawn up as a matrix, called infinitesimal generator of the process is given by

aii ai12 s Qg
a1 a9 . agkj
A = |a7;j‘ =
ak;1 Qg2 -.. Ak,
J J
—H1z Hiz 0
_ J J J J -
= A1 —(Ag +p3) Ha3 ;7 =1,2,3,4,5,6

A3y A3 — (M + M)
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Figure 1: State space diagram of the power generating system with six generators

85

Table 1: Transition rates of the generators per hour(h~!) are calculated from the collected data and are given the table below

Generator H12 H23 )\21 A32 )\31
G1 71x107%2[64x1072] 3x107° [6.7x107%2]3.3x103
G2 73x1072[65x1072] 3x107° [6.8x1072]33x10°
G3 74x1077[61x1072] 3x107° [62x107%2]33x103
G4 78x1072[6.6x1072[33%x10°[69x10"%2] 3x103
G5 78x107%7[64x1072[34x1073[67x107%2] 3x1073
G6 79x107%2[64%x1072[33%x107°[6.7x107%2] 3x1073

We have Kolmogorov forward equation in matrix term

D pitt) = pi(1) A

For elements j = 1,2, 3;

9; = {951, 952,953} = {0,12.5,25}
pi(t) = {pj1(t), pja(t), pja(t)}
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d

Pt = — 132 (D)pj1(t) + Abypja(t) + Mypja(t)
Eoint) = wa(Opn (1) Oy + s )psa(6) + Mapis (1)
Eoist) = —ha(Opsa(t) ~ O + Ma)pis) (1)

Initial conditions are p;3(t) = 1, p;j2(t) = p;j1(t) = 0.

For elements j = 4,5, 6;
9; = {951, gj2, 953} = {0,25,50}
p;(t) == {p;j1(t), pj2(t), pja(t)}

d . , .
() — o (O)pjn (t) + Xy pja(t) + A3y pjs(t)

d . , , .
dtpﬂ(t) 1o (0)pi1(t) — (Ny + 1h3)pja(t) + A3opys(t)
d . . .

dtpj?’(t) — bz (t)pj2(t) — (N3y + Xdo)pjs(t)

Initial conditions are p;3(t) = 1, p;j2(t) = p;1(t) = 0.

After solving six separate system of differential equations under the given initial conditions using MAT-
LAB we get the state probabilities p;(t) for j = 1,2,3,4,5,6. Having the sets g;,p;(t) we can define Lz

transforms for each individual element j as follows.

LzAG1(t)} = p1a(t) 29" + p1a(t)29'2 + p13(t) 2
= Pll(t)zo +P12(t)212 > + pis(t)z *

L2{Go(t)} = p21(t)292" + paa(t)2922 + pas(t)29>
= po1(t)2" + paa(t)22® + pos(t)2®

L2{G3(t)} = pa1(t)29" + paa(t)2952 + Pa3(t)29
= p31(t)2° + paa(t)2'?P + pas(t)2*®

L2{G4(t)} = par(1)29%" + paa(t)292 4 pys(t) 29+
= pa1(t)2" + paa(t)z® + paz(t)z™°

LZ{G5(t)} = p51(t)2951 + p52(t)zg52 + p53(t)z953
= ps51(t)2° + psa(t)2® + ps3(t)2™

Lz{Gg(t)} = pe1(t)29%* + pea(t) 2952 + pgs(t)29%3
(

= pe1(t) 2" + pea(t)z® + pes(t)z™°

Using composition operator €y par [9, p.167] for MSS elements 1,

the Lz transform

f.rv

LAG()} = pra'r{pll(t)z + pra(t) 2125 4 pi3(t) 2%,
P21 ()27 + paa(t)2'%° + pas(t)2%,
p31(t)2° + paa ()20 + pas ()2,

Par()2° + paz(t)2*° + pas(t) 2>,
( ( (t)z

)2”
Pe1(1)2° + pe2(t) 2% + pe3(t)2°°}

OT

Cﬂ

2,3,4,5 and 6 connected in parallel we get



Thus

Vidhya and Manoharan / ProbStat Forum, Volume 11, July 2018, Pages 81-90

19
Lz{G(t)} = Zpk(t)zg"‘
k=1

87

(9)

The state probabilities of the components of this power generating system can be calculated by solving
system of differential equations of each component under given initial conditions with the help of MATLAB.

For Element 1:

p11(t) = 0.0405 — 0.4445 exp{—0.0743t} + 0.404 exp{—0.134¢}
p1a(t) = 0.9594 — 0.057 exp{—0.0743t} — 0.9024 exp{—0.134¢}

pr3(t) = 0.0000005 + 0.5015753 exp{—0.0743¢} + 0.4984242 exp{ —0.134¢}

For Element 2:

Ppo1(t) = 0.04 — 0.43 exp{—0.0763t} + 0.39 exp{—0.136¢}
paa(t) = 0.96 — 0.069 exp{—0.0763t} — 0.891 exp{—0.136¢}

pa3(t) = 0.000002 + 0.501940 exp{—0.0763t} + 0.498058 exp{—0.136¢}

For Element 3:

p31(t) = 0.0418 — 0.3495 exp{—0.0771¢} + 0.3077 exp{—0.1261t}
paa(t) = 0.956 — 0.163 exp{—0.0771¢} + 0.793 exp{—0.1261¢}
p33(t) = 0.0018 4+ 0.5131 exp{—0.0771¢} + 0.4851 exp{—0.1261¢}

For Element 4:

pa1(t) = 0.04 — 0.39 exp{—0.081¢} + 0.35 exp{—0.1383t}
Pas(t) = 0.957 — 0.116 exp{—0.081¢} — 0.841 exp{—0.1383¢}
pas(t) = 0.003 + 0.504 exp{ —0.081¢} + 0.493 exp{—0.1383t}

For Element 5:

ps1(t) = 0.039 — 0.364 exp{—0.0809¢} + 0.325 exp{—0.1345¢}
psa(t) = 0.955 — 0.138 exp{—0.0809¢} — 0.817 exp{—0.1345¢}
pss(t) = 0.0052 + 0.5034 exp{—0.0809¢} + 0.4914 exp{—0.1345¢}

For Element 6:

Pg1(t) = 0.038 — 0.352 exp{—0.0819¢} + 0.314 exp{—0.1344¢}
Py (t) = 0.957 — 0.154 exp{—0.0819¢} — 0.803 exp{—0.1344¢}
Pgs(t) = 0.0041 + 0.5058 exp{—0.0819¢} + 0.4901 exp{—0.1344t}

Based on the resulting Lz transform Lz{G(t)} of the entire MSS ,we can obtain instantaneous availability
for the given demand w.
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According to Load Despatch Centre average demand for a particular month of this power station is
w = 108.4 MW. The power station availability for this demand level is given by

Ajos.a(t) = Z Pr(t). (10)

g1 >108.4

The MSS instantaneous availability A(t) of the power system is calculated for different hours and the
computed values are presented in the figure 2.

Availability Graph
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Figure 2: Graph of power system Availability (for the demand w=108.4 MW) as a function of time

The figure shows that instantaneous availability of the power system is one up to few hours (0 to 20
hours) and decreases after few hours and later eventually attains a stable value.

Loss of load probabilty graph
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Figure 3: Graph of loss of load probability (for the demand w=108.4 MW) as a function of time
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Expected generating capacity deficiency
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Figure 4: Graph of the expected generating capacity deficiency (for the demand w=108.4 MW) as a function of time

Conclusion

In this paper Lz transform for discrete state continuous time Markov process is presented for a power

generating system of multiple components with multiple states connected in parallel. The methods are
employed as a case study for a power station with six generating units connected in parallel. Lz transform
is obtained using simple algebra and it is proved to be a very effective method. The idea of this paper
supports the engineering decision making by providing required availability measure for such complex multi-
state system with multiple components.
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