
ProbStat Forum, Volume 11, July 2018, Pages 104–116
ISSN 0974-3235

ProbStat Forum is an e-journal.
For details please visit www.probstat.org.in

Extreme value theory of mixture generalized order statistics

A M Elsawaha, Gajendra K Vishwakarmab, Zhongquan Tanc

aDepartment of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt and
Division of Science and Technology, BNU-HKBU United International College, Zhuhai 519085, China.

bDepartment of Applied Mathematics, Indian Institute of Technology, Dhanbad 826004, India.
cCollege of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China.

Abstract. Most statistical approaches assume that all of the data points come from the same distri-
bution. However, in real-life applications the data points come from more than one distribution with
no information to identify which observation goes with which distribution. In such cases, the classical
extreme value theory can not help us. In this paper, we investigate the extreme value theory of data
from more than one distribution based on generalized order statistics under continuous strictly monotone
normalization. This paper investigates the asymptotic behaviors of upper and lower extremes generalized
order statistics based on a random sample drawn from a finite mixture of distributions normalized by the
same continuous strictly monotonic sequence or a mixture of continuous strictly monotonic sequences.
For illustration of the usage of our theoretical results, these asymptotic behaviors under linear and power
normalization are studied with examples.

1. Introduction

1.1. Generalized order statistics

Let {Xj : j ∈ N} be a sequence of independent and identically distributed random variables with common
probability density function f and distribution function F . If the first n random variables are arranged in
ascending order of magnitude and written as X1:n < X2:n < ... < Xn:n, we call them ordinary order
statistics. Generalized order statistics have been introduced by Kamps (1995) as a unification of several

models of ascendingly ordered random variables. The generalized order statistics X
(m̃,k)
1:n , X

(m̃,k)
2:n ,..., X

(m̃,k)
n:n

are defined by their probability density function, which is given on the cone {(x1, ..., xn) : x0 = F−1(0) <
x1 ≤ ... ≤ xn < F−1(1) = x0} as follows

f
(m̃,k)
1,2,...,n:n(x1, ..., xn) = kf(xn)(1−F(xn))k−1

n−1∏
i=1

θif(xi)(1−F(xi))
mi ,

where θ1, ..., θn are defined by θn = k > 0 and θj = k + n − j +
∑n−1
i=j mi > 0, j = 1, 2, ..., n − 1 and

m̃ = (m1, ...,mn−1) ∈ <n−1.
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Generalized order statistics have been widely used and they attracted much attention since Kamps
(1995) first introduced them. Generalized order statistics have the advantage of including important
well-known models which are discussed separately in literature, such as the ordinary order statistics, se-
quential order statistics, Progressive type II censored order statistics, record values, kth record values
and Pfeifer’s records. Particular choice of the parameters θ1, ..., θn leads to different models, e.g., or-
dinary order statistics (m1 = ... = mn−1 = 0, k = 1); order statistics with non-integral sample size
(m1 = ... = mn−1 = 0, k = τ −n+ 1, and τ > n− 1); kth record values (m1 = ... = mn−1 = −1 and k is any
positive integer) and sequential order statistics (mi = (n− i+ 1)φi − (n− i)φi+1 − 1, 1 ≤ i ≤ n− 1, k = φn
and φ1, φ2, ..., φn > 0).

In this paper, we consider a wide subclass of generalized order statistics by assuming θj−θj+1 = m+1 > 0,
i.e., m1 = ... = mn−1 = m. This subclass is known as m-generalized order statistics, we call it symmetric
generalized order statistics throughout this paper. Many important practical models, such as ordinary order
statistics, record values, sequential order statistics and order statistics with non-integral sample size, are
included in the symmetric generalized order statistics. The distribution function of the `th lower and the
`th upper symmetric generalized order statistics are represented by

Ξ
(m,k)
`:n (x) = I1−(1−F(x))m+1

(
`,

k

m+ 1
+ n− `

)
(1)

and

Ξ
(m,k)
n−`+1:n(x) = I1−(1−F(x))m+1

(
n− `+ 1,

k

m+ 1
+ `− 1

)
, (2)

respectively, where Ix(n,m) = 1
B(n,m)

∫ x
0
tn−1(1 − t)m−1dt, B(n,m) = Γ(n)Γ(m)

Γ(n+m) and Γ(.) is the gamma

function (c.f. Nasri-Roudsari, 1996).

1.2. Classical extreme value theory

The main problem of the classical extreme value theory of ordinary order statistics is to find conditions
on the distribution function F under which there is a strongly monotone continuous transformation Bn(x),
such that for the `th upper extreme ordinary order statistic the distribution function of B−1

n (Xn−`+1:n)
(for the `th lower extreme ordinary order statistic the distribution function of B−1

n (X`:n)) converges weakly
to a non-degenerate distribution (i.e., the distribution is not degenerate at 0 or 1), to obtain the classes
of possible limit distribution functions and to give methods for calculating the normalizing transformation
Bn(x). Several authors have studied this problem for the linear transformation Bn(x) = anx + bn, such
as Gnedenko (1943), Balkema and de Haan (1972) and Smirnov (1952). The central result of the classical
extreme value theory turns out that the class of possible limit distributions has essentially three different
types of distributions. For some suitable normalizing constants cn, an > 0 and dn, bn ∈ <, we have

Ξ
(0,1)
`:n (cnx+ dn)

w−→n Hl(0,1)
i,α (x) = 1− 1

Γ(`)

∫ ∞
Ui,α(x)

t`−1e−tdt (3)

and

Ξ
(0,1)
n−`+1:n(anx+ bn)

w−→n Hu(0,1)
j,β (x) =

1

Γ(`)

∫ ∞
Vj,β(x)

t`−1e−tdt, (4)

if, and only if, nF(cnx+dn) −→n Ui,α(x) and n(1−F(anx+ bn)) −→n Vj,β(x), respectively at all continuity

points of Ui,α(x) and Vj,β(x), where
w−→n denotes the weak convergence, as n→∞, −→n means the limit

as n −→∞,

U1,α(x) =

{
(−x)−α, x < 0, α > 0,
∞, x ≥ 0,

U2,α(x) =

{
xα, x ≥ 0, α > 0,
0, x < 0,
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V1,β(x) =

{
x−β , x > 0, β > 0,
∞, x ≤ 0,

V2,β(x) =

{
(−x)β , x ≤ 0, β > 0,
0, x > 0

and U3,0(x) = V3,0(−x) = ex,−∞ ≤ x ≤ ∞. In this case, we say that the distribution function F belongs

to the domain of attraction of each of the limits Hl(0,1)
i,α and Hu(0,1)

j,β under linear normalization, written

F ∈ LDA(Hl(0,1)
i,α ) and F ∈ LDA(Hu(0,1)

j,β ), respectively.

The following theorem, due to Nasri-Roudsari (1996) (cf. also Nasri-Roudsari and Cramer, 1999), extends
the above results to the symmetric generalized order statistics.

Theorem 1.1. For any symmetric generalized order statistics, let m > −1, k, cn, an > 0, dn, bn ∈
<, An(m+1)(x) = cn(m+1)x+dn(m+1), Bn1/(m+1)(x) = an1/(m+1)x+bn1/(m+1) and ` be a fixed integer 1 ≤ ` ≤ n.
Then, we have

Ξ
(m,k)
`:n

(
An(m+1)(x)

) w−→n Hl(m,k)
i,α (x) = 1− 1

Γ(`)

∫ ∞
Ui,α(x)

t`−1e−tdt

and

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n Hu(m,k)
j,β (x) =

1

Γ
(

k
m+1 + `− 1

) ∫ ∞
Vm+1
j,β (x)

t
k

m+1 +`−2e−tdt,

if, and only if, F ∈ LDA(Hl(0,1)
i,α ) and F ∈ LDA(Hu(0,1)

j,β ), respectively.

Pantcheva (1985) (cf. also Mohan and Ravi, 1992) introduced a non-linear normalization for the maximal
ordinary order statistics Bn(x) = αn|x|βnS(x) known as the power normalization, where S(x) = −1, 0, 1, if
x < 0, x = 0, x > 0, respectively. The limit distributions obtained with non-linear normalization attract more
distributions than the linear normalization. The following slight generalization of the results in Pantcheva
(1985) for the `th upper extreme ordinary order statistics under power normalization is given by Barakat
and Nigm (2002). For some suitable normalizing constants αn > 0 and βn > 0, we have

Ξ
(0,1)
n−`+1:n(αn|x|βnS(x)) = IF(Bn(x))(n− `+ 1, `)

w−→n Q
(0,1)
j,δ =

1

Γ(`)

∫ ∞
ϕj,δ(x)

t`−1e−tdt,

if, and only if, n
(
1−F

(
αn|x|βnS(x)

))
−→n ϕj,δ(x) at all continuity points of ϕj,δ(x), where

ϕ1,δ(x) =

{
∞, x ≤ 1,
(log x)−δ, x > 1, δ > 0,

ϕ2,δ(x) =

 ∞, x ≤ 0,
(− log x)δ, 0 < x ≤ 1, δ > 0,
0, x > 1,

ϕ3,δ(x) =

 ∞, x ≤ −1,
(− log(−x))−δ, −1 < x ≤ 0, δ > 0,
0, x > 0,

ϕ4,δ(x) =

{
(log(−x))δ, x ≤ −1, δ > 0,
0, x > −1,

ϕ5,δ(x) = ϕ5(x) = V1,1(x) and ϕ6,δ(x) = ϕ6(x) = V2,1(x). In this case, we say that the distribution function

F belongs to the domain of attraction of Q
(0,1)
j,δ under power normalization, written F ∈ PDA(Q

(0,1)
j,δ ).

The following theorem, due to Nasri-Roudsari (1999), extends the above results to the symmetric gen-
eralized order statistics.

Theorem 1.2. For any symmetric generalized order statistics, let m > −1, k, αn, βn > 0 and ` be a fixed
integer 1 ≤ ` ≤ n. Then, we have

Ξ
(m,k)
n−`+1:n

(
αn1/(m+1) |x|βn1/(m+1)S(x)

) w−→n Q
(m,k)
j,δ =

1

Γ
(

k
m+1 + `− 1

) ∫ ∞
ϕm+1
j,δ (x)

t
k

m+1 +`−2e−tdt,

if, and only if, the distribution function F satisfies F ∈ PDA(Q
(0,1)
j,δ ).
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1.3. Finite mixture distribution

The classical extreme value theory assumes that all the observations of a sample come from the same
distribution (i.e., homogeneous population). However, in real-life projects the observations come from more
than one distribution (i.e., heterogeneous population) with no information to identify which observation
goes with which distribution. In this mixture, the ith component (distribution function of the ith sub-

population) is Fi(x) and the mixing proportions Pi > 0, 1 ≤ i ≤ ζ are such that
∑ζ
i=1 Pi = 1. In such cases,

the distribution function is called a finite mixture distribution and is given by F(x) =
∑ζ
i=1 PiFi(x). The

finite mixture distribution provides a natural representation of heterogeneity in many real-life data from a
mixture of distributions. The finite mixture distribution has received increasing attention in recent years
and has proven to be a useful approach in modeling heterogeneous data. The reader can refer to Everitt
and Hand (1981), Titterington et al. (1985), Maclachlan and Basford (1988), Lindsay (1995) and Elsawah
(2014) for some properties and applications of finite mixture distribution.

In the last few years, much attention has been paid in exploring the potential application of the extreme
value theory to the finite mixture distribution. AL-Hussaini and El-Adll (2004) studied the asymptotic dis-
tribution of the maximum ordinary order statistics under finite mixture distribution. Subsequently, Sreehari
and Ravi (2010) gave a closer look at the asymptotic distribution of the maximum ordinary order statistics
under finite mixture distribution with some generalizations. Gwak et al. (2016) studied the asymptotic
distribution of the maximum ordinary order statistics under finite mixture distribution and a statistical
method to control the possible bias. Finally, Alawady et al. (2016) investigated the asymptotic behavior
of the appropriately linear normalized coordinatewise maximum and minimum under multivariate finite
mixture distribution from independent, but not obligatory identically distributed random vectors.

In this paper, we extend the classical extreme value theory to the case of finite mixture distribution based
on symmetric generalized order statistics under continuous strictly monotone normalization. This paper
provides the possible limit distributions of upper and lower extremes symmetric generalized order statistics
based on a random sample drawn from a finite of mixture distributions normalized by the same continuous
strictly monotonic sequence or different continuous strictly monotonic sequences. For illustration of the
usage of our theoretical results, the asymptotic behaviors of mixture symmetric generalized order statistics
under linear and power normalization are studied with some examples.

2. Mixture extreme value theory

The possible non-degenerate limit distribution functions of the `th upper extreme and the `th lower
extreme symmetric generalized order statistics based on a random sample drawn from a finite of mixture
distributions normalized by the same continuous strictly monotonic sequence, as well as sufficient condi-
tions for the existence of these limit distribution functions are given in Theorems 2.6 and 2.7, respectively.
Theorems 2.13 and 2.14 are intended to extend the results of Theorems 2.6 and 2.7, by considering a finite
of mixture distributions where the mixing distributions for the purpose of limiting distributions could be
normalized by different continuous strictly monotonic sequences. The proof of the results for the `th upper
extreme depends on the following Lemmas 2.1 and 2.2, which are simple applications of Theorem 1.5.1 in
Leadbetter et al. (1983) (cf. also Lemma 3.1 and Corollary 3.2 in Nasri-Roudsari, 1996) and Theorem 3
in Smirnov (1952) (cf. also Lemma 3.1 in Barakat, 1997), respectively. The proof of the results for the `th
lower extreme depends on the following Lemmas 2.3 and 2.4, which are simple extensions of Lemmas 2.1
and 2.2 respectively.

Lemma 2.1. For any distribution function F and non-degenerate distribution function G, let an > 0, bn ∈
<, n ∈ N, a(t) = abtc, b(t) = bbtc and btc be the integral part of t. Then, the following statements are
equivalent:

• Fn(anx+ bn)
w−→n G(x) for all continuity points of G.
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• n[1− F(anx+ bn)] −→n − log(G(x)) for all continuity points of G.

• Ft(a(t)x+ b(t))
w−→
t
G(x) for all continuity points of G.

• t[1− F(a(t)x+ b(t))] −→t − log(G(x)) for all continuity points of G.

Lemma 2.2. For any distribution function F, let R be a fixed integer 1 ≤ R ≤ N , N (1 − F) −→N λ <

∞, Γ(x, y) =
∫∞
y
tx−1e−tdt and σN and ρN −→

N 0. Then, for large values of N we have

1

Γ(R)
Γ (R,N (1− F(x)))− σN ≤ IF(x)(N −R+ 1,R) ≤ 1

Γ(R)
Γ (R,N (1− F(x))) + ρN .

Lemma 2.3. For any distribution function F and non-degenerate distribution function J , let cn > 0, dn ∈
<, n ∈ N, c(t) = cbtc, d(t) = dbtc and btc is the integral part of t. Then, the following statements are
equivalent:

• 1− [1− F(cnx+ dn)]n
w−→n J (x) for all continuity points of J .

• nF(cnx+ dn) −→n − log(J (x)) for all continuity points of J .

• 1− [1− F(c(t)x+ d(t))]t
w−→
t
J (x) for all continuity points of J .

• tF(c(t)x+ d(t)) −→t − log(J (x)) for all continuity points of J .

Lemma 2.4. For any distribution function F, let NF −→N γ <∞ and ΘN and ΩN −→
N 0. Then, for large

values of N we have

1− 1

Γ(R)
Γ (R,NF(x))−ΘN ≤ IF(x)(R,N −R+ 1) ≤ 1− 1

Γ(R)
Γ (R,NF(x)) + ΩN .

Remark 2.5. The same results in Lemmas 2.1 and 2.3 hold with anx + bn and cnx + dn replaced by any
continuous strictly monotonic sequence Bn(x).

2.1. Mixture extreme value theory via the same normalization

Theorem 2.6. For any symmetric generalized order statistics from a mixture of ζ distributions Fi(x) with

mixture distribution function F(x) =
∑ζ
i=1 PiFi(x), 0 < Pi < 1 and

∑ζ
i=1 Pi = 1, let m > −1, k > 0, ` be

a fixed integer 1 ≤ ` ≤ n and L(Ki(x)) and R(Ki(x)) be the left and the right end points of a non-degenerate
distribution function Ki(x), respectively. If Fi(x) are normalized by the same strongly monotone continuous
sequence {Bn(x)}∞n=1 and

Fni (Bn(x))
w−→n Ki(x), (5)

then when max1≤i≤ζ L(Ki(x)) < x < max1≤i≤ζ R(Ki(x)) we get

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ
(

k
m+1 + `− 1

) ∫ ∞
(−1)m+1(

∑ζ
i=1 log(Ki(x))Pi)

m+1
t

k
m+1 +`−2e−tdt.

Proof. Since (5) holds, from Lemma 2.1 and Remark 2.5 for 1 ≤ i ≤ ζ we have

n1/(m+1)(1−Fi(Bn1/(m+1)(x))) −→n − logKi(x). (6)

It then follows, since
∑ζ
i=1 Pi = 1 and F(x) =

∑ζ
i=1 PiFi(x) that

1−F(Bn1/(m+1)(x)) =

ζ∑
i=1

Pi (1−Fi(Bn1/(m+1)(x))) . (7)
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Therefore, from (6) and (7) we get(
k

m+ 1
+ n− 1

)
(1−F(Bn1/(m+1)(x)))

m+1 ∼ n(1−F(Bn1/(m+1)(x)))m+1

∼
[
n1/(m+1)(1−F(Bn1/(m+1)(x)))

]m+1

∼

[
ζ∑
i=1

Pin1/(m+1) (1−Fi(Bn1/(m+1)(x)))

]m+1

−→n

(
ζ∑
i=1

−Pi logKi(x)

)m+1

. (8)

From (2) and (8) and by taking F = 1− (1−F(Bn1/(m+1)(x)))
m+1

, N = k
m+1 +n− 1 and R = k

m+1 + `− 1
in Lemma 2.2, the proof can be completed.

Theorem 2.7. For any symmetric generalized order statistics from a mixture of ζ distributions Fi(x) with

mixture distribution function F(x) =
∑ζ
i=1 PiFi(x), 0 < Pi < 1 and

∑ζ
i=1 Pi = 1, let m > −1, k > 0, ` be

a fixed integer 1 ≤ ` ≤ n and L(Ei(x)) and R(Ei(x)) be the left and the right end points of a non-degenerate
distribution function Ei(x), respectively. If Fi(x) are normalized by the same strongly monotone continuous
sequence {An(x)}∞n=1 and

1− (1−Fi(An(x)))n
w−→n Ei(x), (9)

then when max1≤i≤ζ L(Ei(x)) < x < max1≤i≤ζ R(Ei(x)) we have

Ξ
(m,k)
`:n (An(m+1)(x))

w−→n 1− 1

Γ(`)

∫ ∞
∑ζ
i=1 log(Ei(x))−Pi

t`−1e−tdt.

Proof. Since (9) holds, from Lemma 2.3 and Remark 2.5 we get

n(m+ 1)Fi(An(m+1)(x)) −→n − log Ei(x). (10)

It then follows, since
∑ζ
i=1 Pi = 1 and F(An(m+1)(x)) =

∑ζ
i=1 PiFi(An(m+1)(x)) that

F(An(m+1)(x)) = 1−
ζ∑
i=1

Pi
(
1−Fi(An(m+1)(x))

)
. (11)

From Maclaurin series, we have

(1−F(An(m+1)(x)))m+1 = 1− (m+ 1)F(An(m+1)(x))(1 + ◦(1)) ∼ 1− (m+ 1)F(An(m+1)(x)),

(12)

where ◦(1) −→n 0. Therefore, from (10), (11) and (12) we get(
k

m+ 1
+ n− 1

)(
1− (1−F(An(m+1)(x)))m+1

)
∼ n

(
1− (1−F(An(m+1)(x)))m+1

)
∼ n(m+ 1)F(An(m+1)(x))

∼
ζ∑
i=1

Pin(m+ 1)Fi(An(m+1)(x))

−→n
ζ∑
i=1

−Pi log Ei(x). (13)

From (1) and (13) and by taking F = 1− (1−F(An(m+1)(x)))m+1, N = k
m+1 +n− 1 and R = ` in Lemma

2.4, the proof can be completed.
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Corollary 2.8. From Theorems 2.6 and 2.7, we have

Ξ
(0,1)
n−`+1:n(Bn(x)) and Ξ

(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n

{
0, if x ≤ max1≤i≤ζ L(Ki(x)),
1, if x ≥ max1≤i≤ζ R(Ki(x))

and

Ξ
(0,1)
`:n (An(x)) and Ξ

(m,k)
`:n (An(m+1)(x))

w−→n

{
0, if x ≤ max1≤i≤ζ L(Ei(x)),
1, if x ≥ max1≤i≤ζ R(Ei(x)).

Corollary 2.9. From Theorems 2.6 and 2.7, we have the following special cases. It is worth noting that,
the special cases (iii) in (I) and (II) can be found in AL-Hussaini and El-Adll (2004) and Sreehari and Ravi
(2010).

(I) For ordinary order statistics, i.e., m = 0 and k = 1, we get

(i) Ξ
(0,1)
n−`+1:n(Bn(x))

w−→n
1

Γ(`)

∫∞∑ζ
i=1 log(Ki(x))−Pi

t`−1e−tdt.

(ii) Ξ
(0,1)
`:n (An(x))

w−→n 1− 1
Γ(`)

∫∞∑ζ
i=1 log(Ei(x))−Pi

t`−1e−tdt.

(iii) Ξ
(0,1)
n:n (Bn(x))

w−→n
∏ζ
i=1(Ki(x))Pi .

(iv) Ξ
(0,1)
1:n (An(x))

w−→n 1−
∏ζ
i=1(Ei(x))Pi .

(II) If the observations come from the same distribution, i.e., Ki(x) = K(x) ∀i and Ei(x) = E(x) ∀i, then

(i) Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
(−1)m+1(logK(x))m+1 t

k
m+1 +`−2e−tdt.

(ii) Ξ
(0,1)
`:n (An(x)) and Ξ

(m,k)
`:n (An(m+1)(x))

w−→n 1− 1
Γ(`)

∫∞
− log E(x)

t`−1e−tdt.

(iii) Ξ
(0,1)
n:n (Bn(x))

w−→n K(x).

(iv) Ξ
(0,1)
1:n (An(x)) and Ξ

(m,k)
1:n (An(m+1)(x))

w−→n 1− E(x).

Corollary 2.10. For any symmetric generalized order statistics from a mixture of ζ distributions normalized
by the same linear sequence Bn(x) = anx+ bn, let m > −1, k, an > 0, bn ∈ <, ` be a fixed integer 1 ≤ ` ≤ n
and L(Ki(x)) and R(Ki(x)) be the left and the right end points of a non-degenerate distribution function
Ki(x), respectively. Then, when max1≤i≤ζ L(Ki(x)) < x < max1≤i≤ζ R(Ki(x)), we get

(I) Let F(x) = PF1(x)+(1−P)F2(x), where 0 < P < 1, F1 ∈ LDA(Hu(0,1)
1,β (x)) and F2 ∈ LDA(Hu(0,1)

2,β (x)).

Then, we get F(x) ∈ LDA(Hu(0,1)
1,β (x)). That is, for x > 0 we get

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
(Px−β)m+1 t

k
m+1 +`−2e−tdt.

(II) Let F(x) = PF1(x)+(1−P)F2(x), where 0 < P < 1, F1 ∈ LDA(Hu(0,1)
1,β (x)) and F2 ∈ LDA(Hu(0,1)

3,β (x)).
Then for x > 0, we get the following non-degenerate distribution

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
(P(x−β−e−x)+e−x)m+1 t

k
m+1 +`−2e−tdt.

(III) Let F(x) = PF1(x)+(1−P)F2(x), where 0 < P < 1, F1 ∈ LDA(Hu(0,1)
2,β (x)) and F2 ∈ LDA(Hu(0,1)

3,β (x)).

Then, we have Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n


1

Γ( k
m+1 +`−1)

∫∞
(e−x+P((−x)β−e−x))m+1 t

k
m+1 +`−2e−tdt, x ≤ 0,

1

Γ( k
m+1 +`−1)

∫∞
((1−P)e−x)m+1 t

k
m+1 +`−2e−tdt, x > 0.
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(IV) Let F(x) = P1F1(x) + P2F2(x) + P3F3(x), where P1 + P2 + P3 = 1, 0 < P1, P2, P3 < 1, F1 ∈
LDA(H̄(m,k)

1,β (x)), F2 ∈ LDA(Hu(0,1)
2,β (x)) and F3 ∈ LDA(Hu(0,1)

3,β (x)).

Then for x > 0, Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
(P1x−β+P3e−x)m+1 t

k
m+1 +`−2e−tdt.

Proof. The proof is obvious from Theorems 1.1 and 2.6 with simple algebra. We will provide the proof for
the first case (I) and the proof for the other cases will be by the same technique. Let F(x) = PF1(x) + (1−
P)F2(x), where 0 < P < 1, F1 ∈ LDA(Hu(0,1)

1,β (x)) and F2 ∈ LDA(Hu(0,1)
2,β (x)). Then, from Theorems 1.1

and 2.6 we get

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ
(

k
m+1 + `− 1

) ∫ ∞
(−1)m+1(−PV1,β(x)−(1−P)V2,β(x))m+1

t
k

m+1 +`−2e−tdt.

From (4), we get

PV1,β(x) + (1− P)V2,β(x) =

{
Px−β , x > 0, β > 0,
∞, x ≤ 0,

+

{
(1− P)(−x)β , x ≤ 0, β > 0,
0, x > 0

Thus, we get

PV1,β(x) + (1− P)V2,β(x) =

{
Px−β , x > 0, β > 0,
∞, x ≤ 0.

Corollary 2.11. For any symmetric generalized order statistics from a mixture of ζ distributions normalized
by the same strongly monotone continuous power sequence Bn(x) = αn|x|βnS(x), let m > −1, k, αn, βn >
0, ` be a fixed integer 1 ≤ ` ≤ n and L(Ki(x)) and R(Ki(x)) be the left and the right end points of a non-
degenerate distribution function Ki(x), respectively. Then, when max1≤i≤ζ L(Ki(x)) < x < max1≤i≤ζ R(Ki(x)),
we get

(I) Let F(x) =
∑5
i=1 PiFi(x), where

∑5
i=1 Pi = 1, 0 < Pi < 1, F1 ∈ PDA(Q

(0,1)
1,δ (x)) and Fj ∈

PDA(Q
(0,1)
t,δ (x)), t ∈ {2, 3, 4, 6}, 2 ≤ j ≤ 5. Then for x > 1, we get

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
(P1(log x)−δ)m+1 t

k
m+1 +`−2e−tdt.

(II) Let F(x) =
∑6
i=1 PiFi(x), where

∑6
i=1 Pi = 1, 0 < Pi < 1, F1 ∈ PDA(Q

(0,1)
1,δ (x)), F5 ∈ PDA(Q

(0,1)
5,δ (x))

and Fj ∈ PDA(Q
(0,1)
t,δ (x)), t ∈ {2, 3, 4, 6}, j = 2, 3, 4, 6. Then for x > 1, we get

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
(P1(log x)−δ+P5

1
x )
m+1 t

k
m+1 +`−2e−tdt.

(III) Let F(x) =
∑4
i=1 PiFi(x), where

∑4
i=1 Pi = 1, 0 < Pi < 1, F2 ∈ PDA(Q

(0,1)
2,δ (x)) and Fj ∈

PDA(Q
(0,1)
t,δ (x)), t ∈ {3, 4, 6}, j = 1, 3, 4. Then for 0 < x ≤ 1, we get

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
((−1)δP2(log x)δ)m+1 t

k
m+1 +`−2e−tdt.

(IV) Let F(x) =
∑5
i=1 PiFi(x), where

∑5
i=1 Pi = 1, 0 < Pi < 1, F2 ∈ PDA(Q

(0,1)
2,δ (x)), F5 ∈ PDA(Q

(0,1)
5,δ (x))

and Fj ∈ PDA(Q
(0,1)
t,δ (x)), t ∈ {3, 4, 6}, j = 1, 3, 4. Then,

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n


1

Γ( k
m+1 +`−1)

∫∞
(P2(− log x)δ+

P5
x )

m+1 t
k

m+1 +`−2e−tdt, 0 < x < 1,

1

Γ( k
m+1 +`−1)

∫∞
(P5
x )

m+1 t
k

m+1 +`−2e−tdt, x > 1.
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(V) Let F(x) =
∑4
i=1 PiFi(x), where

∑4
i=1 Pi = 1, 0 < Pi < 1, F1 ∈ PDA(Q

(0,1)
5,δ (x)) and Fj ∈

PDA(Q
(0,1)
t,δ (x)), t ∈ {3, 4, 6}, j = 2, 3, 4. Then for x > 0, we get

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
(P1
x )

m+1 t
k

m+1 +`−2e−tdt.

Proof. The proof is obvious from Theorems 1.2 and 2.6 by the same technique as that in the proof of
Corollary 2.10.

Remark 2.12. If Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
z
t

k
m+1 +`−2e−tdt, then

Ξ
(0,1)
n−`+1:n(Bn(x))

w−→n e−z. Therefore, the discussion in Corollaries 2.10 and 2.11 can be immediately given
for the ordinary order statistics.

2.2. Mixture extreme value theory via different normalizations

Theorem 2.13. For any symmetric generalized order statistics from a mixture of ζ distributions Fi(x) with

mixture distribution function F(x) =
∑ζ
i=1 PiFi(x), 0 < Pi < 1,

∑ζ
i=1 Pi = 1, let m > −1, k > 0, `

be a fixed integer 1 ≤ ` ≤ n and L(Ki(x)) and R(Ki(x)) be the left and the right end points of a non-
degenerate distribution function Ki(x), respectively. Suppose Fi(x) are normalized by different strongly
monotone continuous sequences {Bi,n(x)}∞n=1 such that, for 1 ≤ i ≤ ζ, the following conditions hold

(Cu1 ) Fni (Bi,n(x))
w−→n Ki(x), 0 < Ki(x) <∞,

(Cu2 ) n[Fi(Bn(x)) − Fi(Bi,n(x))] −→n ηi(x), 0 < ηi(x) <∞, for some strongly monotone continuous se-
quence {Bn(x)}∞n=1.

Then, when max1≤i≤ζ L(Ki(x)) < x < max1≤i≤ζ R(Ki(x)), we have

Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ
(

k
m+1 + `− 1

) ∫ ∞
(−

∑ζ
i=1[log(Ki(x))Pi+Piηi(x)])

m+1
t

k
m+1 +`−2e−tdt.

Proof. Since F(x) =
∑ζ
i=1 PiFi(x), we get

F(Bn1/(m+1)(x)) =

ζ∑
i=1

PiFi(Bi,n1/(m+1)(x)) +

ζ∑
i=1

Pi
[
Fi(Bn1/(m+1)(x))−Fi(Bi,n1/(m+1)(x))

]
= PζFζ(Bζ,n1/(m+1)(x)) +

ζ−1∑
i=1

PiFi(Bi,n1/(m+1)(x))

+

ζ∑
i=1

Pi
[
Fi(Bn1/(m+1)(x))−Fi(Bi,n1/(m+1)(x))

]
. (14)

Since Pζ = 1−
∑ζ−1
i=1 Pi , from (14) we have

F(Bn1/(m+1)(x)) = Fζ(Bζ,n1/(m+1)(x))−
ζ−1∑
i=1

Pi
[
Fζ(Bζ,n1/(m+1)(x))−Fi(Bi,n1/(m+1)(x))

]
+

ζ∑
i=1

Pi
[
Fi(Bn1/(m+1)(x))−Fi(Bi,n1/(m+1)(x))

]
. (15)



Elsawah, Vishwakarma and Tan / ProbStat Forum, Volume 11, July 2018, Pages 104–116 113

Thus, from (15) we get

n1/(m+1)(1−F(Bn1/(m+1)(x))) = n1/(m+1)(1−Fζ(Bζ,n1/(m+1)(x)))

−
ζ∑
i=1

Pin1/(m+1)
[
Fi(Bn1/(m+1)(x))−Fi(Bi,n1/(m+1)(x))

]
+

ζ−1∑
i=1

Pi
[
n1/(m+1)(1−Fi(Bi,n1/(m+1)(x)))

− n1/(m+1)(1−Fζ(Bζ,n1/(m+1)(x)))
]
. (16)

Suppose that (Cu1 ) is satisfied. Then, from Lemma 2.1 and Remark 2.5 for i = 1, 2, ..., ζ we have n(1 −
Fi(Bn(x))) −→n − logKi(x). Therefore, (Cu1 ) and (Cu2 ) become

n1/(m+1)(1−Fi(Bn1/(m+1)(x))) −→n − logKi(x) (17)

and

n1/(m+1)[Fi(Bn1/(m+1)(x))−Fi(Bi,n1/(m+1)(x))] −→n ηi(x), (18)

respectively. Then, from (16), (17) and (18) we get

n1/(m+1)(1−F(Bn1/(m+1)(x))) −→n − logKζ(x)−
ζ∑
i=1

Piηi(x)

+

ζ−1∑
i=1

Pi(− logKi(x) + logKζ(x)). (19)

It then follows, since
∑ζ−1
i=1 Pi = 1− Pζ , that

n1/(m+1)(1−F(Bn1/(m+1)(x))) −→n −
ζ∑
i=1

Pi(logKi(x) + ηi(x)). (20)

Therefore, from (20) we get(
k

m+ 1
+ n− 1

)
(1−F(Bn1/(m+1)(x)))m+1 ∼ n [(1−F(Bn1/(m+1)(x)))]

m+1

∼
[
n1/(m+1)(1−F(Bn1/(m+1)(x)))

]m+1

−→n

[
−

ζ∑
i=1

Pi(logKi(x) + ηi(x))

]m+1

.

(21)

From (2) and (21) and by taking F = 1− (1−F(Bn1/(m+1)(x)))
m+1

, N = k
m+1 +n−1 and R = k

m+1 + `−1
in Lemma 2.2, the proof can be completed.

Theorem 2.14. For any symmetric generalized order statistics from a mixture of ζ distributions Fi(x)

with mixture distribution function F(x) =
∑ζ
i=1 PiFi(x), 0 < Pi < 1,

∑ζ
i=1 Pi = 1, let m > −1, k >

0, ` be a fixed integer 1 ≤ ` ≤ n and L(Ei(x)) and R(Ei(x)) be the left and the right end points of a
non-degenerate distribution function Ei(x), respectively. Suppose Fi(x) are normalized by different strongly
monotone continuous sequences {Ai,n(x)}∞n=1 such that, for 1 ≤ i ≤ ζ, the following conditions hold

(Cl1) 1− (1−Fi(Ai,n(x)))n
w−→n Ei(x), 0 < Ei(x) <∞,
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(Cl2) n[Fi(An(x)) − Fi(Ai,n(x))] −→n µi(x), 0 < µi(x) <∞, for some strongly monotone continuous se-
quence {An(x)}∞n=1.

Then, when max1≤i≤ζ L(Ei(x)) < x < max1≤i≤ζ R(Ei(x)), we have

Ξ
(m,k)
`:n (An(m+1)(x))

w−→n 1− 1

Γ(`)

∫ ∞
∑ζ
i=1[log(Ei(x))−Pi−Piµi(x)]

t`−1e−tdt.

Proof. The proof is similar to the proof of Theorems 2.7 and 2.13, except the obvious changes.

Corollary 2.15. From Theorems 2.13 and 2.14, we have the following special cases

(I) For ordinary order statistics, i.e., m = 0 and k = 1, we get

(i) Ξ
(0,1)
n−`+1:n(Bn(x))

w−→n
1

Γ(`)

∫∞∑ζ
i=1[log(Ki(x))−Pi−Piηi(x)] t

`−1e−tdt.

(ii) Ξ
(0,1)
`:n (An(x))

w−→n 1− 1
Γ(`)

∫∞
[log(Ei(x))−Pi−Piµi(x)] t

`−1e−tdt.

(iii) Ξ
(0,1)
n:n (Bn(x)) = Fn(Bn(x))

w−→n
∏ζ
i=1 [Ki(x) exp(ηi(x))]

Pi .

(iv) Ξ
(0,1)
1:n (An(x))

w−→n 1−
∏ζ
i=1 [Ei(x) exp(µi(x))]

Pi .

(II) If the observations come from the same distribution, i.e., Ki(x) = K(x), ηi(x) = η(x), Ei(x) = E(x)
and µi(x) = µ(x) for 1 ≤ i ≤ ζ, then we have

(i) Ξ
(m,k)
n−`+1:n(Bn1/(m+1)(x))

w−→n
1

Γ( k
m+1 +`−1)

∫∞
(−1)m+1(logK(x)+η(x))m+1 t

k
m+1 +`−2e−tdt.

(ii) Ξ
(m,k)
`:n (An(m+1)(x)) and Ξ

(0,1)
`:n (An(x))

w−→n 1− 1
Γ(`)

∫∞
− log E(x)−µ(x)

t`−1e−tdt.

(iii) Ξ
(0,1)
n:n (Bn(x))

w−→n K(x) exp(η(x)).

(iv) Ξ
(m,k)
1:n (An(m+1)(x)) and Ξ

(0,1)
1:n (An(x))

w−→n 1− E(x) exp(µ(x)).

3. Applications

In this section some illustrative examples of the most practically important distributions are obtained,
which lend further support to our theoretical results.

Example 3.1. (logistic, Exponential(1) and Gumbel distributions). Let X1, X2, ..., Xn be a
random sample drawn from a mixed population whose distribution function F(x) = P1F1(x) + P2F2(x) +
P3F3(x), where P1 + P2 + P3 = 1, 0 < Pi < 1, i = 1, 2, 3, F1(x) = 1

1+e−x , − ∞ < x < ∞, F2(x) =

1− e−x, x > 0 and F3(x) = exp(−e−x), −∞ < x <∞. One can choose the common linear normalization,
Bn(x) = x+log n. Then Bn1/(m+1) = x+ 1

m+1 log n. It is not difficult to show that n(1−Fi(x+log n)) −→n e−x,

or, equivalently, Fni (x+ log n)
w−→n exp(−e−x), i = 1, 2, 3. Then, we have

Ξ
(m,k)
n−`+1:n(x+

1

m+ 1
log n)

w−→n
1

Γ
(

k
m+1 + `− 1

) ∫ ∞
e−x(m+1)

t
k

m+1 +`−2e−tdt

and Ξ(0,1)
n:n (x+ log n)

w−→n exp(−e−x).

Example 3.2. (Power(1) and Exponential(1) distributions). Let X1, X2, ..., Xn be a random
sample drawn from a mixed population whose distribution function F(x) = PF1(x) + (1−P)F2(x), where
0 < P < 1, F1(x) = x, 0 < x < 1 and F2(x) = 1−e−x, x > 0. One can choose the common linear normaliza-
tion, An(x) = x

n . Then, we get An(m+1)(x) = x
n(m+1) . It is not difficult to show that nFi( xn ) −→n x, i = 1, 2.
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or, equivalently, 1 − (1 − Fi( xn ))n
w−→n 1 − e−x, i = 1, 2. Then, we have Ξ

(m,k)
`:n

(
x

n(m+1)

)
and Ξ

(0,1)
`:n

(
x
n

)
w−→n 1− 1

Γ(`)

∫∞
x
t`−1e−tdt and Ξ

(0,1)
1:n

(
x
n

) w−→n 1− e−x.

Example 3.3. Let X1, X2, ..., Xn be a random sample drawn from a mixed population whose distribu-

tion function F(x) = PF1(x) + (1−P)F2(x), where 0 < P < 1, F1(x) =

 0, x ≤ 0,
exp[−(− log x)α], 0 < x ≤ 1
1, x > 1,

and F2(x) =

{
exp[−(log(−x))α], x ≤ −1,
1, x > −1.

One can choose the common power normalization, Bn(x) =

|x|n
−1
α S(x). Then Bn1/(m+1)(x) = |x|n

−1
α(m+1) S(x). It is not difficult to show that[

Fi
(
|x|n−1/αS(x)

)]n
w−→n Fi(x), i = 1, 2. Then, we have

Ξ
(m,k)
n−`+1:n

(
|x|n

−1
α(m+1) S(x)

)
w−→n

1

Γ
(

k
m+1 + `− 1

) ∫ ∞
(−1)m+1(log([F1(x)]P [F2(x)]1−P))m+1

t
k

m+1 +`−2e−tdt

and Ξ(0,1)
n:n

(
|x|n

−1
α S(x)

)
w−→n [F1(x)]P [F2(x)]1−P .

Example 3.4. (Pareto and Frechet distributions). Let X1, X2, ..., Xn be a random sample drawn
from a mixed population whose distribution function F(x) = PF1(x) + (1 − P)F2(x), where 0 < P <

1, F1(x) =

{
0, x < 1,
1− x−α, x ≥ 1, α > 0

and F2(x) =

{
exp[−x−α], x ≥ 0, α > 0
0, x < 0.

One can choose the

common power normalization, Bn(x) = (nx)1/α. Then, we get Bn1/(m+1)(x) = (n
1

m+1x)1/α. It is not difficult
to show that n(1−Fi((nx)1/α)) −→n 1

x , i = 1, 2. Then, we get

Ξ
(m,k)
n−`+1:n

(
(n

1
m+1x)1/α

)
w−→n

1

Γ
(

k
m+1 + `− 1

) ∫ ∞
x−(m+1)

t
k

m+1 +`−2e−tdt

and Ξ(0,1)
n:n

(
(nx)1/α)

)
=

w−→n e−1/x.

Similarly, one can choose the common linear normalization, Bn(x) = n1/αx. Then, Bn1/(m+1)(x) = n1/α(m+1)x.
It is not difficult to show that n(1−Fi(n1/αx)) −→n x−α, i = 1, 2. Then,

Ξ
(m,k)
n−`+1:n

(
n1/α(m+1)x

)
w−→n

1

Γ
(

k
m+1 + `− 1

) ∫ ∞
x−α(m+1)

t
k

m+1 +`−2e−tdt

and Ξ(0,1)
n:n

(
n1/αx

)
=

w−→n e−x
−α
.

Remark 3.1. It is worth mentioning that at this stage we are unable to find a suitable example where the
normalizing constants are different to support the assumptions (Cu2 ) and (Cl2) of Theorems 2.13 and 2.14,
respectively. This will be investigated in our future work.
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