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Abstract. This paper presents the analysis of a heterogeneous two-server queueing system with
Bernoulli feedback, multiple working vacations, balking, reneging and retention of reneged customers.
We suppose that the impatience timer of a customer in the system depends on the server’s states. The
steady-state probabilities of the model are obtained. Various performance measures of the model have
been discussed. Then, we develop a model for the costs incurred and carry out a sensitive analysis for this
queueing system with respect to all system parameters. Further, numerical results have been presented.

1. Introduction

Recent decades have seen an increasing interest in queueing systems with customer’s impatience because
of their great advantage in many real life applications such as situations involving impatient telephone
switchboard customers, inventory systems with storage of perishable goods, business and industry etc. The
readers can be referred to Gupta et al. [11; 12], Boxma et al. [8], Choudhury and Medhi [9], Jose and
Manoharan [13; 14], Kumar and Sharma [16; 17], Bouchentouf et al. [6] and references therein.

Queueing models with vacation and working vacation have gained the interest of many researchers in
the last three decades, due to their wide range of applications, especially in the communication and the
manufacturing systems. Altman and Yechiali [2] analyzed the infinite-server queues with system’s additional
tasks and impatient customers, both multiple and single U-task scenarios are studied considering both
exponentially and generally distributed task and impatience times. Jain and Jain [20] considered a working
vacation queueing model with multiple types of server breakdowns, via a matrix geometric approach, the
stationary queue length distribution has been obtained. Laxmi et al. [19] presented the analysis of a finite
buffer M/M/1 queue with multiple and single working vacations. Then, Goswami [10] dealt with a queueing
system with Bernoulli schedule working vacations, vacation interruption and impatient customers. Abidini
et al. [1] gave an analysis of vacation and polling models with retrials. Panda and Goswami [21] established
an equilibrium balking strategies in renewal input queue with bernoulli-schedule controlled vacation and
vacation interruption. Later, Bouchentouf and Yahiaoui [7] presented an analysis of a Markovian feedback
queueing system with reneging and retention of reneged customers, multiple working vacations and Bernoulli
schedule vacation interruption, where customers’ impatience is due to the servers’ vacation.
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Recently, there has been growing interest in the study of multiserver queues with vacation. For instance,
Yue and Yue [22] considered heterogeneous two-server network system with balking and a Bernoulli vacation
schedule. An M/M/2 queueing system with heterogeneous servers including one with working vacation has
been analyzed by Krishnamoorthy and Sreenivasan [15]. Ammar [3] investigated the transient analysis of
a two-heterogeneous servers queue with impatient behavior, the explicit solution for the considered model
has been obtained. Later, Laxmi and Jyothsna [18] presented the analysis of a renewal input multiple
working vacations queue with balking, reneging and heterogeneous servers. Using supplementary variable and
recursive techniques, the steady-state probabilities of the model are obtained. Recently, the cost optimization
analysis for an MX/M/c vacation queueing system with waiting servers and impatient customers has been
given by Bouchentouf and Guendouzi [5].

In this paper, we present a heterogeneous two-server queueing system with Bernoulli feedback, multiple
working vacations, and impatient customers. In this work, we extend the analytical results of the model
given in Laxmi and Jyothsna [18] to the case where the impatience timer of customers in the system depend
on the server’s states, moreover the concept of feedback and retention of reneged customers is incorporated.

The rest of the paper is organized as follows, in Section 2, we give a detailed description of the model.
In Section 3, the steady-state probabilities of the model are obtained using supplementary variable and
recursive techniques. In Section 4, various performance measures of the model are presented. In Section 5,
we develop the cost model. Then, numerical results are presented in Section 6. Finally, conclusion and some
future aspects of research done are stated in Section 7.

2. The model

Consider a heterogeneous two-server queueing system with Bernoulli feedback, multiple working vaca-
tions, balking, server’s states-dependent reneging and retention of reneged customers.
• The inter-arrival times are assumed to be independent and identically distributed random variables with

cumulative distribution function A(u), probability density function a(u), u ≥ 0, Laplace-Stieltjes transform
(L.S.T.) A∗($) and mean inter-arrival time 1/λ = −A∗(1)(0), where h(1)(0) denotes the first derivative of
h($) evaluated at $ = 0.
• There exist two heterogeneous servers, server 1 and server 2. The service times are supposed to be

exponentially distributed with parameters µ1 and µ2, respectively, with µ2 ≤ µ1. Whenever server 2 becomes
idle and there are no waiting customers in the queue, he leaves for an exponential working vacation ’WV’
with parameter φ. During a WV, server 2 serves the waiting customers at a rate lower than the normal
service rate which is assumed to be exponentially distributed with parameter ν. At the end of vacation
period, if there are customers waiting in the queue, server 2 switches to normal working level, otherwise he
continues the vacation. Moreover, it is supposed that server 1 is always available in the system.
• The capacity of the system is taken finite N, and the customers are served on a FCFS discipline.
• An arriving customer who finds i customers in the system decides either to join the queue with

probability bi = 1− i
N2 or balk with probability bi = 1−bi = i

N2 . Suppose that b0 = b1 = 1, 0 ≤ bi+1 ≤ bi ≤ 1,
2 ≤ i ≤ N − 1, and bN = 0.
• If there are i customers in the system, one of the (i − 2) waiting customers in the queue may renege.

Whenever a customer arrives at the system and finds the server 2 on working vacation (resp. on normal
busy period), he activates an impatience timer T1 (respectively. T2,) which is exponentially distributed with
parameter ξ1 (resp. ξ2). If the customer’s service has not begun before the customer’s timer expires, the
customer abandons the queue. Thus, customer’s average reneging rate is given by (i− 2)ξ1 (resp. (i− 2)ξ2)
when server 2 is on working vacation (resp. on normal busy period), 2 ≤ i ≤ N. We assume that impatience
timers are independent and identically distributed random variables and independent of the number of
waiting customers.
• Using certain mechanism, each reneged customer may leave the queue definitively with probability α

or may be retained in the system with complimentary probability α′.
• After getting incomplete or unsatisfactory service either from working vacation service or normal busy

service, with probability β′, a customer may rejoin the system as a Bernoulli feedback customer to receive
another regular service. Otherwise, he leaves the system definitively, i.e. with probability β, where β′+β = 1.
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• The inter-arrival times, service times and vacation times are assumed to be independent.

3. Steady-State Solution

In this section, the distributions of the steady-state of the system will be obtained following the same
method given in Laxmi and Jyothsna [18]. Thus, using the supplementary variable and recursive techniques
the steady-state probabilities will be derived. To get the system length distributions at arbitrary epoch, the
differential difference equations using the remaining inter-arrival time as the supplementary variable will be
developed.

Let Ns(t) be the number of customers in the system at time t. And let I(t) be the remaining inter-arrival
time at time t for the next arrival.

Let

S(t) =

 0, when server 2 is idle during working vacation (WV) period;
1, when server 2 is busy during working vacation (WV) period;
2, when server 2 is busy during normal busy period.

Then, the joint probabilities are presented as

πi,0(u, t)du = P(Ns(t) = i, u ≤ I(t) < u+ du, S(t) = 0), u ≥ 0, i = 0, 1,

πi,j(u, t)du = P(Ns(t) = i, u ≤ I(t) < u+ du, S(t) = j), u ≥ 0, j = 1, 2,

1 ≤ i ≤ N.

Thus
πi,0(u) = lim

t→∞
πi,0(u, t), i = 0, 1, πi,j(u) = lim

t→∞
πi,j(u, t), j = 1, 2, 1 ≤ i ≤ N.

The L.S.T. of the steady-state probabilities are given as

π∗i,0($) =

∫ ∞
0

e−$uπi,0(u)du, i = 0, 1, π∗i,j($) =

∫ ∞
0

e−$uπi,j(u)du,

j = 1, 2, 1 ≤ i ≤ N.

Let πi,j = π∗i,j(0) be the probability of i customers in the system when the server is in state j at an
arbitrary epoch.

The system of differential difference equations at steady-state is given as follows:

−π(1)
0,0(u) = βµ1π1,0(u) + βνπ1,1(u) + βµ2π1,2(u), (1)

−π(1)
1,0(u) = −βµ1π1,0(u) + βνπ2,1(u) + βµ2π2,2(u) + a(u)π0,0(0), (2)

−π(1)
1,1(u) = −(φ+ βν)π1,1(u) + βµ1π2,1(u), (3)

−π(1)
2,1(u) = −

(
β(µ1 + ν) + φ

)
π2,1(u) +

(
β(µ1 + ν) + αξ1

)
π3,1(u)

+a(u)

(
π1,0(0) + π1,1(0) + 2

N2π2,1(0)

)
,

(4)
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−π(1)
i,1 (u) = −

(
β(µ1 + ν) + φ+ (i− 2)αξ1

)
πi,1(u)

+

(
β(µ1 + ν) + (i− 1)αξ1

)
πi+1,1(u)

+a(u)

((
1− i−1

N2

)
πi−1,1(0) + i

N2πi,1(0)

)
, 3 ≤ i ≤ N − 1,

(5)

−π(1)
N,1(u) = −

(
β(µ1 + ν) + φ+ (N − 2)αξ1

)
πN,1(u)

+a(u)

((
1− N−1

N2

)
πN−1,1(0) + πN,1(0)

)
,

(6)

−π(1)
1,2(u) = −βµ2π1,2(u) + φπ1,1(u) + βµ1π2,2(u), (7)

−π(1)
i,2 (u) = −

(
β(µ1 + µ2) + (i− 2)αξ2

)
πi,2(u) + φπi,1(u)

+

(
β(µ1 + µ2) + (i− 1)αξ2

)
πi+1,2(u)

+a(u)

((
1− i−1

N2

)
πi−1,2(0) + i

N2πi,2(0)

)
, 2 ≤ i ≤ N − 1,

(8)

−π(1)
N,2(u) = −

(
β(µ1 + µ2) + (N − 2)αξ2

)
πN,2(u) + φπN,1(u)

+a(u)

((
1− N−1

N2

)
πN−1,2(0) + πN,2(0)

)
,

(9)

Now, define ζi = β(µ1 + ν) + φ+ (i− 2)αξ1 and θi = β(µ1 + µ2) + (i− 2)αξ2, for 2 ≤ i ≤ N.
Multiplying Equations (1)-(9) by e−$u and integrating over u from 0 to ∞, we get

−$π∗0,0($) = −π0,0(0) + βµ1π
∗
1,0($) + βνπ∗1,1($) + βµ2π

∗
1,2($), (10)

(βµ1 −$)π∗1,0($) = −π1,0(0) + βνπ∗2,1($) + βµ2π
∗
2,2($) +A∗($)π0,0(0), (11)

(φ+ βν −$)π∗1,1($) = −π1,1(0) + βµ1π
∗
2,1($), (12)

(ζ2 −$)π∗2,1($) = −π2,1(0) + (ζ3 − φ)π∗3,1($)

+A∗($)

(
π1,0(0) + π1,1(0) + 2

N2π2,1(0)

)
,

(13)
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(ζi −$)π∗i,1($) = −πi,1(0) + (ζi+1 − φ)π∗i+1,1($)

+A∗($)

(
(1− i−1

N2 )πi−1,1(0) + i
N2πi,1(0)

)
,

(14)

(ζN −$)π∗N,1($) = −πN,1(0) +A∗($)

(
(1− N − 1

N2
)πN−1,1(0) + πN,1(0)

)
, (15)

(βµ2 −$)π∗1,2($) = −π1,2(0) + φπ∗1,1($) + βµ1π
∗
2,2($), (16)

(θi −$)π∗i,2($) = −πi,2(0) + φπ∗i,1($) + θi+1π
∗
i+1,2($)

+A∗($)

((
1− i−1

N2

)
πi−1,2(0) + i

N2πi,2(0)

)
,

(17)

(θN −$)π∗N,2($) = −πN,2(0) + φπ∗N,1($)

+A∗($)

((
1− N−1

N2

)
πN−1,2(0) + πN,2(0)

)
.

(18)

Next, adding Equations (10)-(18), we get

−A∗($)

( 1∑
i=0

πi,0(0) +

N∑
i=1

(πi,1(0) + πi,2(0))

)
=

$

( 1∑
i=0

π∗i,0($) +

N∑
i=1

(π∗i,1($) + π∗i,2($))

)
,

Then, taking $ −→ 0 and using the normalization condition, we obtain

1∑
i=0

πi,0(0) +

N∑
i=1

(πi,1(0) + πi,2(0)) = λ. (19)

Next, we have to derive the steady-state probabilities at pre-arrival epoch, to this end we shall establish
the relations between system length distributions at arbitrary and pre-arrival epochs. Firstly, we have to
connect the pre-arrival epoch probabilities π−i,j = lim

t→∞
P(Ns(t) = i, S(t) = j/I(t) = 0) (π−i,0, i = 0, 1 and

π−i,j , j = 1, 2; 1 ≤ i ≤ N,) with the rate probabilities πi,0(0) and πi,j(0), respectively.
Via Bayes’ theorem on conditional probabilities, we obtain

π−i,j =
1

λ
πi,j(0), j = 0, i = 0, 1; j = 1, 2; 1 ≤ i ≤ N. (20)

Putting $ = ζN in Equation (15), we obtain

πN−1,1(0) = ψN−1πN,1(0), (21)
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such that ψN−1 =
(1−A∗(ζN ))N2

A∗(ζN )(N 2 −N + 1)
.

Substituting Equation (21) in Equation (15), we get

(ζN −$)π∗N,1($) =

(
A∗($)

((
1− N − 1

N2

)
ψN−1 + ψN

)
− ψN

)
πN,1(0), (22)

with ψN = 1.
For $ 6= ζN , we have

π∗N,1($) =
(A∗($)((1− N−1

N2 )ψN−1 + ψN )− ψN )

(ζN −$)
πN,1(0). (23)

Differentiating Equation (22) with respect to $ and taking $ = ζN , we get

π∗N,1(ζN ) = −A∗(1)(ζN )

((
1− N − 1

N2

)
ψN−1 + ψN

)
πN,1(0). (24)

Differentiating (22) with respect to $ successively l times, we obtain

(ζN −$)π
∗(l)
N,1($)− lπ∗(l−1)N,1 ($) = A∗(l)($)

((
1− N − 1

N2

)
ψN−1 + ψN

)
πN,1(0). (25)

From Equations (23)-(25), we get

π∗N,1($) = ςN,$πN,1(0),

where

ςN,$ =


A∗($)((1− N−1

N2 )ψN−1 + ψN )− ψN
(ζN −$)

, if $ 6= ζN ;

−A∗(1)($)((1− N − 1

N2
)ψN−1 + ψN ), if $ = ζN ,

with

ς
(l)
N,$ =


A∗(l)($)((1− N−1

N2 )ψN−1 + ψN ) + lς
(l−1)
N,$

(ζN −$)
, if $ 6= ζN ;

−A∗(l+1)($)((1− N−1
N2 )ψN−1 + ψN )

l + 1
, if $ = ζN ,

such that ς
(l)
N,$ denotes the lth derivative of ςN,$ with respect to $.

For i = N − 1, taking $ = ζN−1 in Equation (14) and using Equation (21), we obtain

πN−2,1(0) = ψN−2πN,1(0), (26)

with ψN−2 =
(ψN−1 − (ζN − φ)ςN,ζN−1

−A∗(ζN−1)N−2N2 ψN−1)N2

A∗(ζN−1)(N2 −N + 2)
.

Next, substituting Equation (26) in Equation (14), for i = N − 1, we obtain

π∗N−1,1($) = ςN−1,$πN,1(0),
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where

ςN−1,$ =


A∗($)((1− N−2

N2 )ψN−2 + N−1
N2 ψN−1) + (ζN − φ)ςN,$ − ψN−1

(ζN−1 −$)
, if $ 6= ζN−1;

−(A∗(1)($)((1− N − 2

N2
)ψN−2 +

N − 1

N2
ψN−1) + (ζN − φ)ς

(1)
N,$), if $ = ζN−1,

with

ς
(l)
N−1,$ =


A∗(l)($)((1− N−2

N2 )ψN−2 + N−1
N2 ψN−1) + (ζN − φ)ς

(l)
N,$ + lς

(l−1)
N−1,$

(ζN−1 −$)
, if $ 6= ζN−1;

−
A∗(l+1)($)((1− N−2

N2 )ψN−2 + N−1
N2 ψN−1) + (ζN − φ)ς

(l+1)
N,$

l + 1
, if $ = ζN−1.

In the same way, for i = N − 2, N − 3, ...., 3 in Equation (14), it yields

πi−1,1(0) = ψi−1πN,1(0), i = N − 2, N − 3, ...., 3. (27)

where

ψi−1 =
(ψi − (ζi+1 − φ)ςi+1,ζi −A∗(ζi) i

N2ψi)N
2

A∗(ζi)(N2 − i− 1)
, i = N − 2, N − 3, ..., 3,

and

π∗i,1($) = ςi,$πN,1(0), i = N − 2, N − 3, ..., 3,

where

ςi,$ =


A∗($)((1− i−1

N2 )ψi−1 + i−1
N2 ψi) + (ζi+1 − φ)ςi+1,$ − ψi

(ζi −$)
, if $ 6= ζi;

−(A∗(1)($)((1− i− 1

N2
)ψi−1 +

i− 1

N2
ψi) + (ζi+1 − φ)ς

(1)
i+1,$), if $ = ζi,

with

ς
(l)
i,$ =


A∗(l)($)((1− i−1

N2 )ψi−1 + i−1
N2 ψi) + (ζi+1 − φ)ς

(l)
i+1,$ − lς

(l−1)
i,$

(ζi −$)
, if $ 6= ζi;

−
(ζi+1 − φ)ς

(l+1)
i+1,ζi

+A∗(l+1)($)((1− i−1
N2 )ψi−1 + i−1

N2 ψi)

l + 1
, if $ = ζi.

Taking $ = ζ2 in Equation (13), we find

π1,1(0) = ψ1πN,1(0) + ωπ1,0(0), (28)

where

ψ1 =
ψ2 − (ζ3 − φ)ς3,ζ2 −A∗(ζ2) 2

N2ψ2

A∗(ζ2)
and ω = −A

∗(ζ2)

A∗(ζ2)
= −1.

Now, substituting Equation (28) in Equation (13), we obtain

π∗2,1($) = ς2,$πN,1(0),
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where

ς2,$ =


−ψ2 + (ζ3 − φ)ς3,$ +A∗($)(ψ1 + 2

N2ψ2)

(ζ2 −$)
, if $ 6= ζ2;

−((ζ3 − φ)ς
(1)
3,$ +A∗(1)($)(ψ1 +

2

N2
ψ2), if $ = ζ2,

with

ς
(l)
2,$ =


(ζ3 − φ)ς

(l)
3,$ +A∗(l)($)(ψ1 + 2

N2ψ2)− lς(l−1)2,$

(ζ2 −$)
, if $ 6= ζ2;

−
(ζ3 − φ)ς

(l+1)
3,$ +A∗(l+1)($)(ψ1 + 2

N2ψ2)

l + 1
, if $ = ζ2.

From Equation (12), we have

π∗1,1($) = ς1,$πN,1(0) + τ1,$π1,0(0)),

where

ς1,$ =


βµ1ς2,$ − ψ1

(φ+ βν −$)
, if $ 6= φ+ βν;

−βµ1ς
(1)
2,$, if $ = φ+ βν,

; ς
(l)
1,$ =


βµ1ς

(l)
2,$ − lς

(l−1)
1,$

(φ+ βν −$)
, if $ 6= φ+ βν;

−
βµ1ς

(l+1)
2,$

l + 1
, if $ = φ+ βν,

τ1,$ =

{
− ω

(φ+ βν −$)
, if $ 6= φ+ βν;

0, if $ = φ+ βν,
; τ

(l)
1,$ =

 lτ
(l−1)
1,$

(φ+ βν −$)
, if $ 6= φ+ βν;

0, if $ = φ+ βν.

Putting θN = $ in Equation (18) and using π∗N,1($), we obtain

πN−1,2(0) = ηN−1πN,2(0) + γN−1πN,1(0), (29)

where

ηN−1 =
1−A∗(θN )N2

A∗(θN )(N2 −N − 1)
and γN−1 = − φςN,θNN

2

A∗(θN )(N2 −N − 1)
.

Substituting Equation (29) in Equation (18), we get

π∗N,2($) = ρN,$πN,2(0) + χN,$πN,1(0),

where

ρN,$ =


A∗($)((1− N−1

N2 )ηN−1 + ηN )− ηN
θN −$

, if θN 6= $;

−A∗(1)($)((1− N − 1

N2
)ηN−1 + ηN ), if θN = $,

χN,$ =


φςN,$ +A∗($)(1− N−1

N2 )γN−1

θN −$
, if θN 6= $;

−(φς
(1)
N,$ +A∗(1)($)(1− N − 1

N2
)γN−1), if θN = $,
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with

ρ
(l)
N,$ =


A∗(l)($)((1− N−1

N2 )ηN−1 + ηN ) + lρ
(l−1)
N,$

(θN −$)
, if θN 6= $;

−
A∗(l+1)(θN )((1− N−1

N2 )ηN−1 + ηN )

l + 1
, if θN = $,

χ
(l)
N,$ =


φς

(l)
N,$ +A∗(l)($)(1− N−1

N2 )γN−1 + lχ
(l−1)
N,$

θN −$
, if θN 6= $;

−
φς

(l+1)
N,θN

+A∗(l+1)(θN )(1− N−1
N2 )γN−1

l + 1
, if θN = $,

ηN = 1 and γN = 0.
In the same manner, we obtain πi,2(0) and π∗i,2($) using Equation (17). Thus

πi−1,2(0) = ηi−1πN,2(0) + γi−1πN,1(0), 2 ≤ i ≤ N − 1, (30)

with

ηi−1 = N2 ηi − θi+1ρi+1,θi −A∗(θi) i
N2 ηi

A∗(θi)(N2 − i+ 1)
,

γi−1 = N2 γi − θi+1χi+1,θi −A∗(θi) i
N2 γi − φςi,θi

A∗(θi)(N2 − i+ 1)
.

Substituting Equation (30) in Equation(17)

π∗i,2($) = ρi,$πN,2(0) + χi,$πN,1(0),

with

ρi,$ =


−ηi + θi+1ρi+1,$ +A∗($)((1− i−1

N2 )ηi−1 + i
N2 ηi)

(θi −$)
, if θi 6= $;

−(θi+1ρ
(1)
i+1,$ +A∗(1)($)((1− i− 1

N2
)ηi−1 +

i

N2
ηi)), if θi = $,

χi,$ =


−γi + φςi,$ + θi+1χi+1,$ +A∗($)((1− i−1

N2 )γi−1 + i
N2 γi)

θi −$
, if θi 6= $;

−(φς
(1)
i,$ + θi+1χ

(1)
i+1,$ +A∗(1)($)((1− i− 1

N2
)γi−1 +

i

N2
γi)), if θi = $,

where

ρ
(l)
i,$ =


θi+1ρ

(l)
i+1,$ +A∗(l)($)((1− i−1

N2 )ηi−1 + i
N2 ηi) + lρ

(l−1)
i,$

(θi −$)
, if θi 6= $;

−
θi+1ρ

(l+1)
i+1,$ +A∗(l+1)($)((1− i−1

N2 )ηi−1 + i
N2 ηi)

l + 1
, if θi = $,

χ
(l)
i,$ =


φς

(l)
i,$ + θi+1χ

(l)
i+1,$ +A∗(1)($)((1− i−1

N2 )γi−1 + i
N2 γi) + lχ

(l−1)
i,$

θi −$
, if θi 6= $;

−
φς

(l+1)
i,$ + θi+1χ

(l+1)
i+1,$ +A∗(l+1)($)((1− i−1

N2 )γi−1 + i
N2 γi)

l + 1
, if θi = $.
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Putting $ = βµ1 in Equation(11), we get

π0,0(0) = ε0π1,0(0) + σ0πN,1(0) +40πN,2(0), (31)

where ε0 =
1

A∗(βµ1)
, σ0 =

−βνς2,βµ1 − βµ2χ2,βµ1

A∗(βµ1)
, and 40 =

−βµ2ρ2,βµ1

A∗(βµ1)
.

Now, let $ = φ+ βν, using (30), we get

π1,0(0) = κ1πN,1(0), (32)

where κ1 = ψ1 − βµ1ς2,φ+βν .
Putting βµ2 = $ in Equation (16)

πN,2(0) = κ2πN,1(0), (33)

where κ2 =
φς1,βµ2

+ βµ1χ2,βµ2
+ φκ1τ1,βµ2

− γ1
η1 − βµ1ρ2,βµ2

.

From Equations (19),(21), and (26)-(33), it yields

πN,1(0) = λ

(
κ1ε0 + σ0 + κ240 + ψ1 +

N∑
i=2

ψi +

N∑
i=2

(γi + κ2ηi)

)−1
.

Now, from the rate probabilities (πi,j(0)) using Equation (20), the pre-arrival epoch probabilities (π−i,j)
can be derived easily.

Next, setting $ = 0 in the Equations (11)-(18) and using (20). We obtain after slight simplification.

πN,1 =
λ

ζN

(
1− N − 1

N2

)
π−N−1,1,

πi,1 =

(
ζi+1 − φ

ζi

)
πi+1,1 +

λ

ζi

((
1− i− 1

N2

)
π−i−1,1 −

(
1− i

N2

)
π−i,1

)
, i = N − 1, ..., 3,

π2,1 =

(
ζ3 − φ
ζ2

)
π3,1 +

λ

ζ2

(
π−1,0 + π−1,1 −

(
1− 2

N2

)
π−2,1

)
,

π1,1 =

(
βµ1

φ+ βν

)
π2,1 −

(
λ

φ+ βν

)
π−1,1,

πN,2 =
φ

θN
πN,1 +

λ

θN

(
1− N − 1

N2

)
π−N−1,2,

πi,2 =

(
θi+1

θi

)
πi+1,2 +

φ

θi
πi,1 +

λ

θi

((
1− i− 1

N2

)
π−i−1,2 −

(
1− i

N2

)
π−i,2

)
, i = N − 1, ..., 2,

π1,2 =
µ1

µ2
π2,2 +

φ

βµ2
π1,1 −

λ

βµ2
π−1,2,

π1,0 =
ν

µ1
π2,1 +

µ2

µ1
π2,2 +

λ

βµ1

(
π−0,0 − π

−
1,0

)
.

Finally, the explicit expressions of π0,0 can be computed by using the normalization condition, that is,

π0,0 = 1− π1,0 −
N∑
i=1

(πi,1 + πi,2).
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4. Measures of Performance

− The mean number of customers in the system.

Ls = π1,0 +

N∑
i=1

i(πi,1 + πi,2).

− The mean number of customers waiting for service.

Lq =

N∑
i=2

(i− 2)(π1,1 + πi,2).

− The mean waiting time of customers in the system.

Ws =
Ls
λ′
, where λ′ = λ(1− (πN,1 + πN,2)) is the effective arrival rate.

− The mean rate of joining the system.

Js = λ(π0,0 + π1,0 + π1,1 + π1,2) +

N∑
i=2

λ

(
1− i

N2

)
(πi,1 + πi,2).

− The probability that server 2 is idle, in working vacation period and in normal busy period, respectively.

Pidle =

1∑
i=0

πi,0; Pw =

N∑
i=1

πi,1; Pb =

N∑
i=1

πi,2.

− The average balking rate.

Br =
λ

N2

N∑
i=1

i(πi,1 + πi,2)

− The average reneging rates during busy period and working vacation period, respectively.

Rren1 = αξ1

N∑
i=2

(i− 2)πi,1, Rren2 = αξ2

N∑
i=2

(i− 2)πi,2.

− The average retention rates during busy period and working vacation period, respectively.

Rret1 = α′ξ1

N∑
i=2

(i− 2)πi,1, Rret2 = α′ξ2

N∑
i=2

(i− 2)πi,2.

5. Economic analysis

In this section, we develop a model for the costs incurred in the queueing system under consideration
using the following symbols:

• C1 : Cost per unit time when server 2 is on normal busy period.

• C2 : Cost per unit time when server 2 is on working vacation period.

• C3 : Cost per unit time when server 2 is idle during working vacation.

• C4 : Cost per unit time when a customer joins the queue and waits for service.
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• C5 : Cost per unit time when a customer balks.

• C6 : Cost per service per unit time during busy period.

• C7 : Cost per service per unit time during working vacation period.

• C8 : Cost per unit time when a customer reneges during the working vacation period of server 2.

• C9 : Cost per unit time when a customer reneges during normal busy period of server 2.

• C10 : Cost per unit time when a customer is retained during the working vacation period of server 2.

• C11 : Cost per unit time when a customer is retained during normal busy period of server 2.

• C12 : Cost per unit time when a customer returns to the system as a feedback customer.

• C13 : Fixed server purchase cost per unit.

Let
R be the revenue earned by providing service to a customer.
Γ be the total expected cost per unit time of the system.
∆ be the total expected revenue per unit time of the system.
Θ be the total expected profit per unit time of the system.
Thus

Γ = C1Pb + C2Pw + C3Pidle + C4Lq + C5Br + C8Rren1 + C9Rren2

+C10Rret1 + C11Rret2 + (µ1 + µ2)C6 + νC7 + β′(µ1 + µ2 + ν)C12 + 2C13.

The total expected revenue per unit time of the system is given by:

∆ = R
(
µ1π1,0 + (µ1 + ν)Pw + (µ1 + µ2)Pb

)
Now, the total expected profit is presented as

Θ = ∆− Γ.

6. Numerical analysis

6.1. Effect of different parameters on the performance measures of the system

Case 1: Effect of arrival rate (λ).

We check the behavior of the system characteristics for various values of (λ) by keeping all other variables
fixed. Put µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, α = 0.4, ξ1 = 0.6, ξ2 = 0.4, α = 0.4, β = 0.6, and N = 5.

Table 1: Variation in system performance measures vs. λ
λ 1,4 2,2 3 3,8 4,2 4,8

Ls 1.14991 1.91543 2.59842 3.12838 3.33741 3.59305
Js 1.34147 1.95358 2.38493 2.66080 2.75654 2.86360
Br 0.05852 0.24641 0.61506 1.13919 1.44346 1.93639
Rren1 0.00231 0.01641 0.02729 0.03161 0.03187 0.03077
Rren2 0.01089 0.05901 0.12314 0.18468 0.21173 0.24702
Rret1 0.00347 0.02462 0.04094 0.04742 0.04780 0.04616
Rret2 0.01634 0.08852 0.18472 0.27702 0.31759 0.37054
Ws 0.07773 0.43723 0.88339 1.28599 1.45611 1.67216
Pidle 0.58306 0.34822 0.19872 0.11374 0.08692 0.05907
Pw 0.16708 0.20504 0.19084 0.15799 0.14092 0.11745
Pb 0.24986 0.44674 0.61044 0.72827 0.77216 0.82348
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According to Table 1, we observe that along the increasing of the arrival rate λ, the characteristics Br,
Ls, Js, Pb, Rren1, Rren2, Rret1, Rret2, Pw all increase. While Pidle decreases monotonically. This is due
to the fact that along the increases of the arrival rate, the queue of the system becomes large. Thus, the
normal busy period becomes significant, while the probability that the server 2 becomes idle Pidle decreases.
Furthermore, the average balking rate increases with λ because of the size of the system.

Case 2: Effect of service rates (µ1), (µ2) and (ν).

We examine the behavior of the characteristics of the system for various values of (µ1), (µ2) and (ν),
respectively by keeping all other variables fixed. To this end, we consider the following cases

- λ = 2.5, µ2 = 1.9, ν = 1.4, β = 0.6, ξ1 = 0.1, ξ2 = 0.2, α = 0.4, φ = 1.2, and N = 5.

- λ = 2.5, µ1 = 3, ν = 1.4, β = 0.6, ξ1 = 0.1, ξ2 = 0.2, α = 0.4, φ = 1.2, and N = 5.

- λ = 2.5, µ1 = 3, µ2 = 2.5, β = 0.6, ξ1 = 0.1, ξ2 = 0.2, α = 0.4, φ = 0.5, and N = 5.

Table 2: Variation in system performance measures vs. µ1
µ1 2.1 2.5 2.9 3.3 3.5 3.7

Ls 2.59636 2.37738 2.18182 2.00876 1.93012 1.85638
Js 1.97894 2.06061 2.12774 2.18275 2.20640 2.22782
Br 0.52105 0.43938 0.37225 0.31724 0.29359 0.27217
Rren1 0.00409 0.00379 0.00339 0.00293 0.00269 0.00245
Rren2 0.06321 0.05109 0.04092 0.03246 0.02879 0.02546
Rret1 0.00613 0.00568 0.00509 0.00440 0.00404 0.00367
Rret2 0.09482 0.07664 0.06139 0.04869 0.04319 0.03819
Ws 0.89249 0.73355 0.59642 0.47920 0.42735 0.37959
Pidle 0.20634 0.24159 0.27501 0.30622 0.32095 0.33510
Pw 0.17391 0.18698 0.19688 0.20405 0.20676 0.20896
Pb 0.61974 0.57143 0.52811 0.48972 0.47228 0.45594

Table 3: Variation in system performance measures vs. µ2
µ2 1.7 1.9 2.1 2.3 2.5 2.7

Ls 2.20418 2.13650 2.07650 2.02313 1.97550 1.93286
Js 2.11974 2.14254 2.16232 2.17956 2.19464 2.20789
Br 0.38025 0.35745 0.33767 0.32043 0.30535 0.29210
Rren1 0.00306 0.00328 0.00348 0.00367 0.00384 0.00399
Rren2 0.04224 0.03865 0.03550 0.03273 0.03027 0.02809
Rret1 0.00459 0.00492 0.00523 0.00550 0.00576 0.00599
Rret2 0.06336 0.05798 0.05326 0.04909 0.04541 0.04214
Ws 0.60457 0.56533 0.53104 0.50096 0.47448 0.45108
Pidle 0.26413 0.28303 0.30013 0.31564 0.32975 0.34260
Pw 0.18537 0.19891 0.21123 0.22244 0.23268 0.24204
Pb 0.55050 0.51806 0.48864 0.46192 0.43757 0.41536

Table 4: Variation in system performance measures vs. ν
ν 1.3 1.5 1.7 1.9 2.1 2.3

Ls 2.10375 2.05437 2.00692 1.96140 1.91775 1.87594
Js 2.15324 2.16818 2.18221 2.19538 2.20775 2.21936
Br 0.34675 0.33181 0.31778 0.30461 0.29224 0.28063
Rren1 0.00968 0.00911 0.00857 0.00807 0.00760 0.00716
Rren2 0.02424 0.02337 0.02255 0.02176 0.02101 0.02029
Rret1 0.01453 0.01367 0.01286 0.01211 0.01141 0.01075
Rret2 0.03636 0.03506 0.03382 0.03264 0.03151 0.03044
Ws 0.54523 0.52009 0.49635 0.47394 0.45281 0.43290
Pidle 0.29148 0.30771 0.32362 0.33918 0.35437 0.36917
Pw 0.38610 0.37849 0.37095 0.36351 0.35618 0.34897
Pb 0.32242 0.31380 0.30543 0.29731 0.28945 0.28186

From Tables 2–3–4, we observe that
− with the increases of µ1, µ2 and ν, Br decreases, while Js increases, as it should be. Therefore,

customers are served faster with µ1, µ2 and ν. This implies a decrease in the mean number of customers in
the system Ls, in the probability that the server 2 is on normal busy period Pb and in the mean waiting
time Ws. Consequently, the probability that the server 2 becomes idle Pidle increases with the service rates.
− the probability of working vacation of server 2, Pw increases with both µ1 and µ2 because customers

are served faster. Then, the mean system size decreases. Hence, the server 2 switches to vacation period.
On the other hand, Pw decreases with ν, as intuitively expected.
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− when µ1 and ν increase, the average reneging rates during working vacation and during normal busy
period Rren1 and Rren2, average retention rates in working vacation and in normal busy period Rret1 and
Rret1 decrease. This agree absolutely with our intuition. While when µ2 increases, Rren2 and Rret2 decrease
because customers are served faster. Thus, the size of the system is reduced, hence, server 2 goes on vacation.
Consequently, the probability of working vacation increases which leads to an increase in the average reneging
and retention rates Rren1 and Rret1, respectively.

Case 3: Effect of reneging rates (ξ1) and (ξ2).

We check the behavior of the performance measures of the system for various values of (ξ1) and (ξ2),
respectively by keeping all other variables fixed. Let

- λ = 3.5, µ1 = 2.1, µ2 = 1.7, ν = 1.3, β = 0.6, ξ2 = 2, α = 0.6, φ = 0.1, and N = 5.

- λ = 3.5, µ1 = 2.5, µ2 = 2.1, ν = 1.7, β = 0.6, ξ1 = 1, α = 0.6, φ = 1.2, and N = 5.

Table 5: Variation in system performance measures vs. ξ1
ξ1 3.5 3.7 3.9 4.1 4.3 4.5

Ls 2.38620 2.36189 2.33912 2.31773 2.29763 2.27868
Js 3.04204 3.05417 3.06521 3.07529 3.08453 3.09301
Br 0.45795 0.44582 0.43478 0.42470 0.41546 0.40698
Rren1 0.86827 0.87516 0.88040 0.88415 0.88655 0.88775
Rren2 0.21529 0.21313 0.21109 0.20917 0.20736 0.20564
Rret1 0.57884 0.58344 0.58693 0.58943 0.59103 0.59183
Rret2 0.14353 0.14208 0.14072 0.13944 0.13824 0.13709
Ws 0.59288 0.57183 0.55215 0.53372 0.51642 0.50016
Pidle 0.15090 0.15327 0.15554 0.15769 0.15974 0.16170
Pw 0.66838 0.66710 0.66586 0.66468 0.66355 0.66247
Pb 0.18072 0.17963 0.17860 0.17762 0.17671 0.17583

Table 6: Variation in system performance measures vs. ξ2
ξ2 3.5 3.7 3.9 4.1 4.3 4.5

Ls 2.19085 2.17338 2.15715 2.14203 2.12791 2.11470
Js 3.09108 3.09919 3.10654 3.11320 3.11926 3.12479
Br 0.40891 0.40080 0.39345 0.38679 0.38073 0.37520
Rren1 0.10338 0.10446 0.10547 0.10642 0.10733 0.10818
Rren2 0.69007 0.69389 0.69657 0.69822 0.69896 0.69889
Rret1 0.06892 0.06964 0.07031 0.07095 0.07155 0.07212
Rret2 0.46004 0.46259 0.46438 0.46548 0.46597 0.46592
Ws 0.50091 0.48666 0.47347 0.46121 0.44980 0.43915
Pidle 0.22108 0.22338 0.22554 0.22758 0.22951 0.23134
Pw 0.26548 0.26824 0.27084 0.27330 0.27561 0.27780
Pb 0.51344 0.50838 0.50362 0.49912 0.49488 0.49086

According to Tables 5–6, we observe that
− with the increases of reneging rates ξ1 and ξ2, the characteristics Ls, Ws and Br decrease, while Js

increases, as intuitively expected.
− along the increasing of ξ1, the average reneging rate during working vacation Rren1 increases, while

the average rate of reneging in the normal busy period of server 2, Rren2 decreases.
− along the increasing of ξ1, the probability of working vacation Pw, the probability of normal busy

period Pb decrease because of the size of the system which becomes small due to reneging. Consequently,
the probability that the server 2 becomes idle Pidle increases with ξ1.
− when the reneging rate ξ2 increases, the average reneging rate during normal busy period Rren2 and

the average rate of reneging in the busy period of server 2 during his vacation Rren1 increase.
− the increases of ξ2 implies a decreasing of Pb and an increasing of Pw, which can be explained by the

fact that when reneging rate increases in the normal busy period of server 2, more customers are lost. Thus,
server 2 goes on vacation, consequently Pw and Pidle increase.

Case 4: Effect of vacation rate (φ).

We study the behavior of the performance measures of the system for various values of (φ) by keeping
all other variables fixed. Put λ = 3, µ1 = 2.5, µ2 = 2.1, ν = 1.7, β = 0.6, ξ1 = 0.1, ξ2 = 0.5, α = 0.6, and
N = 5.
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Table 7: Variation in system performance measures vs. φ
φ 0.5 0.7 0.9 1.1 1.3 1.5

Ls 2.60098 2.56891 2.54766 2.53259 2.52136 2.51270
Js 2.38962 2.40830 2.42040 2.42879 2.43490 2.43952
Br 0.61037 0.59169 0.57959 0.57120 0.56509 0.56047
Rren1 0.01925 0.01413 0.01087 0.00864 0.00705 0.00586
Rren2 0.16768 0.18586 0.19731 0.20502 0.21048 0.21448
Rret1 0.01283 0.00942 0.00724 0.00576 0.00470 0.00391
Rret2 0.11179 0.12391 0.13154 0.13668 0.14032 0.14299
Ws 0.87984 0.85509 0.83889 0.82753 0.81917 0.81278
Pidle 0.19442 0.19954 0.20307 0.20567 0.20767 0.20927
Pw 0.34910 0.28653 0.24394 0.21293 0.18926 0.17055
Pb 0.45647 0.51392 0.55298 0.58139 0.60305 0.62017

From Table 7, we remark that along the increasing of the vacation rate φ, Ls and Ws decrease. Therefore,
the average balking rate Br decreases, while the average rate of joining the system Js increases with φ.
Further, the increase in vacation rate implies that Pb increases, while, the probability that the system
goes on working vacation Pw decreases. This implies an increase in the mean number of customers served.
Therefore, the probability that the server 2 becomes idle Pidle increases. Further, with the increases of φ,
Rren1 and Rret1 (resp. Rren2 and Rret2) decreases (resp. increase), as intuitively expected.

Case 5: Effect of non-feedback probability (β).

We examine the behavior of the performance measures of the system for various values of (β) by keeping
all other variables fixed. Put µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, α = 0.4, ξ1 = 0.6, ξ2 = 0.4, α = 0.4,
λ = 3, and N = 5.

Table 8: Variation in system performance measures vs. β
β 0.1 0.3 0.5 0.7 0.9 1

Ls 4.54732 3.81878 2.97531 2.27287 1.77073 1.58122
Js 0.86754 1.63389 2.19464 2.52636 2.70701 2.76395
Br 2.13245 1.36610 0.80535 0.47363 0.29298 0.23604
Rren1 0.00085 0.01173 0.02482 0.02695 0.02132 0.01758
Rren2 0.40725 0.29047 0.16948 0.08786 0.04352 0.03040
Rret1 0.00128 0.01760 0.03724 0.04042 0.03198 0.02637
Rret2 0.61088 0.43570 0.25423 0.13179 0.06529 0.04560
Ws 2.54892 1.86435 1.16273 0.66146 0.36090 0.26329
Pidle 0.00141 0.03512 0.13419 0.26505 0.38866 0.44283
Pw 0.00291 0.05196 0.14789 0.22317 0.25612 0.26039
Pb 0.99568 0.91292 0.71792 0.51177 0.35522 0.29678

Thought Table 8, we see that when the non-feedback probability β increases, Ls and Ws decrease, this
results in the decreasing of the average balking rate Br and in the increasing of the average rate of joining
the system Js. Moreover, along the increases of the non-feedback probability, Rren1 and Rret1 increase,
while Rren2 and Rret2 decreases. Further, obviously, the probability of normal busy period Pb decreases,
the probability that the system is on working vacation Pw and the probability that the server is idle Pidle
increase, as it should be.

Case 6: Effect of non-retention probability (α).

We examine the behavior of the characteristics of the system for various values of (α) by keeping all
other variables fixed. We take µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, α = 0.4, ξ1 = 0.6, ξ2 = 0.4, λ = 3,
β = 0.6, and N = 5.

Table 9: Variation in system performance measures vs. α
α 0,1 0.3 0.5 0.7 0.9 1.0

Ls 2.72298 2.63780 2.56099 2.49153 2.42851 2.39916
Js 2.30217 2.35932 2.40879 2.45182 2.48939 2.50639
Br 0.69782 0.64067 0.59120 0.54817 0.51060 0.49360
Rren1 0.00697 0.02064 0.03379 0.04632 0.05815 0.06379
Rren2 0.03488 0.09622 0.14786 0.19138 0.22809 0.24423
Rret1 0.06277 0.04816 0.03379 0.01985 0.00646 0.00000
Rret2 0.31400 0.22452 0.14786 0.08202 0.02534 0.00000
Ws 0.98850 0.91654 0.85196 0.79381 0.74127 0.71689
Pidle 0.18516 0.19437 0.20289 0.21078 0.21809 0.22155
Pw 0.17945 0.18723 0.19428 0.20069 0.20653 0.20924
Pb 0.63539 0.61840 0.60283 0.58853 0.57538 0.56921

Through Table 9, we remark that when the non-retention probability α increases, the size of the system
Ls, the mean waiting time Ws and the average balking rate Br decrease, while the probability that customers
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join the system increases. Moreover, the average reneging rates Rren1 and Rren2 increase with α, while
average retention rates Rret1 and Rret2 decrease with the increasing of α, which absolutely agree with our
intuition. This implies that the probability of normal busy period Pb decreases. Consequently, Pw and Pidle
increase with α, as it should be.

Case 7: Effect of system capacity (N).

We analyze the behavior of the performance measures of the system for various values of (N) by keeping
all other variables fixed. Let λ = 3, µ1 = 2.5, µ2 = 2.1, ν = 1.7, β = 0.6, ξ1 = 0.1, ξ2 = 0.2, α = 0.4, and
φ = 1.1.

Table 10: Variation in system performance measures vs. N
N 3 4 5 6 7 8

Ls 1.73287 2.21507 2.69421 3.16073 3.60819 4.03161
Js 1.97401 2.17590 2.32287 2.43554 2.52532 2.59887
Br 1.02598 0.82409 0.67712 0.56445 0.47467 0.40112
Rren1 0.00201 0.00446 0.00532 0.00543 0.00524 0.00496
Rren2 0.00850 0.03470 0.06644 0.10020 0.13399 0.16668
Rret1 0.00301 0.00669 0.00798 0.00814 0.00786 0.00744
Rret2 0.01275 0.05205 0.09966 0.15030 0.20098 0.25002
Ws 0.15645 0.54544 0.96360 1.38828 1.80595 2.20759
Pidle 0.29531 0.23036 0.18785 0.15868 0.13791 0.12272
Pw 0.28102 0.23321 0.19472 0.16616 0.14516 0.12955
Pb 0.42367 0.53643 0.61743 0.67516 0.71693 0.74773

From Tables 10, we remark that along the increasing of N , the average balking rate Br decreases due to
the large capacity of the system. Then, the means system size Ls, and the mean waiting time Ws increase.
Consequently, Pb increases, while, Pw and Pidle decrease, this implies an increase in the mean number of
customers served with N. Moreover, the average reneging and retention rates Rren2 and Rret2 increase due to
the significant number of customers in the system. While the behaviour of Rren1 and Rret1 is not monotonic,
it increases, then decreases when N is above a certain threshold.

6.2. Economic analysis

In this part we present the variation in total expected cost, total expected revenue and total expected
profit with the change in diverse parameters of the system. For the whole numerical study we fix the costs
at C1 = 4, C2 = 2, C3 = 2, C4 = 3, C5 = 3, C6 = 4, C7 = 4, C8 = 2, C9 = 2, C10 = 3, C11 = 3, C12 = 2,
C13 = 5, R = 25. And consider the following Tables

• Table 11: λ = 1.4 : 0.8 : 4.8, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.6, ξ2 = 0.4, β = 0.6, α = 0.4,
N = 10,

• Table 12: λ = 2.5, µ1 = 2.1 : 0.4 : 3.7, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.1, ξ2 = 0.2, β = 0.6, α = 0.4,
N = 10,

• Table 13: λ = 2.5, µ1 = 3.0, µ2 = 1.7 : 0.2 : 2.7, ν = 1.7, φ = 1.2, ξ1 = 0.1, ξ2 = 0.2, β = 0.6, α = 0.4,
N = 10,

• Table 14: λ = 2.5, µ1 = 3.0, µ2 = 2.5, ν = 1.3 : 0.2 : 2.3, φ = 1.2, ξ1 = 0.1, ξ2 = 0.2, β = 0.6, α = 0.4,
N = 10,

• Table 15: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.3 : 0.2 : 1.3, ξ2 = 0.1, β = 0.6, α = 0.4,
N = 10,

• Table 16: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.1, ξ2 = 0.3 : 0.2 : 1.3, β = 0.6, α = 0.4,
N = 10,

• Table 17: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 0.3 : 0.2 : 1.3, ξ1 = 0.1, ξ2 = 0.2, β = 0.6, α = 0.4,
N = 10,

• Table 18: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.6, ξ2 = 0.4, β = 0.1 : 0.2 : 1, α = 0.6,
N = 10,
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• Table 19: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.6, ξ2 = 0.4, β = 0.6, α = 0.1 : 0.2 : 1,
N = 10,

• Table 20: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.1, ξ1 = 0.1, ξ2 = 0.2, β = 0.6, α = 0.4,
N = 3 : 2 : 11.

The numerical results are presented in following Tables and Graphes.

Table 11: Γ, ∆ and Θ vs. λ.
λ 1.4 2.2 3 3.8 4.2 4.8

Γ 43.41467 47.16563 53.81363 61.46361 64.93732 69.43411
∆ 62.44631 87.83599 103.58542 110.98226 112.68849 113.98970
Θ 19.03164 40.67037 49.77179 49.51866 47.75117 44.55559

Table 12: Γ, ∆ and Θ vs. µ1.
µ1 2.1 2.5 2.9 3.3 3.5 3.7

Γ 49.04408 48.72019 48.82543 49.31085 49.67482 50.10801
∆ 89.84638 95.38482 100.32531 104.82918 106.95748 109.01970
Θ 40.80231 46.66463 51.49987 55.51833 57.28266 58.91169

Table 13: Γ, ∆ and Θ vs. µ2.
µ2 1.7 1.9 2.1 2.3 2.5 2.7

Γ 48.64273 48.91370 49.2815 49.73212 50.25305 50.83345
∆ 100.27834 101.48669 102.4811 103.30047 103.97722 104.53800
Θ 51.63561 52.57298 53.1996 53.56835 53.72417 53.70455

Table 14: Γ, ∆ and Θ vs. ν.
ν 1.3 1.5 1.7 1.9 2.1 2.3

Γ 60.006248 60.42808 60.83935 61.24349 61.64399 62.04501
∆ 112.06111 113.81396 115.51876 117.17090 118.76361 120.29314
Θ 52.05486 53.38588 54.67941 55.92741 57.11961 58.24813

Table 15: Γ, ∆ and Θ vs. ξ1.
ξ1 0.3 0.5 0.7 0.9 1.1 1.3

Γ 55.60031 55.55241 55.50744 55.46520 55.42550 55.38809
∆ 106.73059 106.62743 106.52766 106.43137 106.33855 106.24913
Θ 51.13028 51.07502 51.02023 50.96617 50.91305 50.86104

Table 16: Γ, ∆ and Θ vs. ξ2.
ξ2 0.3 0.5 0.7 0.9 1.1 1.3

Γ 54.42735 54.18721 53.50838 52.98109 52.05005 52.20927
∆ 104.77963 104.26948 102.84655 101.58610 99.60370 99.46025
Θ 50.35228 50.08227 49.33816 48.60501 47.55365 47.25098

Table 17: Γ, ∆ and Θ vs. φ.
φ 0.1 0.5 0.9 1.3 1.7 2.1

Γ 55.52628 55.08756 55.01420 54.98712 54.97424 54.96726
∆ 103.76382 105.37013 105.66036 105.78134 105.84754 105.88922
Θ 48.23755 50.28258 50.64616 50.79423 50.87330 50.92196

Table 18: Γ, ∆ and Θ vs. β.
β 0.1 0.3 0.5 0.7 0.9 1

Γ 82.79219 72.35272 59.53657 49.17583 42.63061 40.23601
∆ 114.99820 114.53007 109.25291 96.80668 83.22630 77.19281
Θ 32.20601 42.17735 49.71635 47.63085 40.59570 36.95680
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Table 19: Γ, ∆ and Θ vs. α
α 0.1 0.3 0.5 0.7 0.9 1

Γ 58.62700 55.12727 52.71747 51.01291 49.76362 49.25887
∆ 106.81003 104.56888 102.68686 101.11251 99.78247 99.19185
Θ 48.18303 49.44161 49.96940 50.09960 50.01886 49.93298

Table 20: Γ, ∆ and Θ vs. N.
N 3 5 6 7 9 11

Γ 46.70298 48.86349 50.13514 51.42076 53.87616 56.02955
∆ 88.66901 98.09453 100.70350 102.56714 104.95503 106.32773
Θ 41.96604 49.23104 50.56836 51.14637 51.07887 50.29818
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Figure 1: Γ, ∆ and Θ vs. λ.
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Figure 2: Γ, ∆ and Θ vs. ν
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Figure 3: Γ, ∆ and Θ vs. µ1.
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Figure 4: Γ, ∆ and Θ vs. µ2.

General comments

− According to Table 11 and Figure 1, we remark that the increases of λ generates an increase in Γ
and ∆, this is quite obvious. While the behavior of Θ is not monotonic, it increases, then decreases when λ
is above a certain threshold, this can be explicable by the fact that a large number of incoming customers
engenders a large number of customers served, and consequently the total expected profit increases, but
when λ is large enough, the customers in the system may renege due to the long queue length, this implies
a decreases in Θ. Furthermore, the non-monotonicity of the total expected profit can be due to the choice
of the system parameters.
− From Tables 12-14 and Figures 2-4, we remark that Γ, ∆ and Θ all increase with the increasing of

µ1, µ2, and ν. We can explain this by the fact that with the increasing of the service rates, the average
balking rate Br decreases. The customers are served faster, this leads to a decrease in the mean number of
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Figure 5: Γ, ∆ and Θ vs. ξ1.
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Figure 6: Γ, ∆ and Θ vs. ξ2.
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Figure 7: Γ, ∆ and Θ vs. β.
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Figure 8: Γ, ∆ and Θ vs. φ.
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Figure 9: Γ, ∆ and Θ vs. α.
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Figure 10: Γ, ∆ and Θ vs. N.

customers in the system Ls, in the probability that the system is idle Pidle, in the mean waiting time Ws,
in average reneging rates Rren1 and Rren1. Therefore, the expected total profit increases.

− From Tables 15-16 and Figures 5-6, we remark that ∆, and Θ decrease along the increasing of impa-
tience rates ξ1 and ξ2. This is due to the fact that the mean waiting time of impatient customers decreases
with the increasing of ξ1 and ξ2. Therefore, the average rate of loss customers increases, while the mean
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number of customers waiting for service and the busy period probability decrease which results in the de-
creasing of the total expect cost Γ. Consequently, this later generates a decrease in the total expected profit
Θ. Thus, it is quite clear that impatient phenomenon has a negative impact in the economy.
− From Table 17 and Figure 8, we see that Γ decreases with φ, while ∆ and Θ increase along the

increasing of the vacation rate φ. Obviously, the decrease in the mean vacation time implies a diminution
in probability of loss customers, this leads to a high rate of customers served. Therefore, the total expected
profit becomes significant.
− From Table 18 and Figure 7, we remark that along the increasing of non-feedback probability β, total

expected cost Γ and total expected revenue ∆ decrease. While, the total expected profit Θ is not monotonic
with β, it first increases, then, decreases significantly. The non-monotonicity can be due to the choice of
the system parameters. Therefore, one can deduce easily the negative impact of this probability on different
costs of the system.
− Through Table 19 and Figure 9, we observe that the increasing of non-retention probability α generates

a decrease in Γ and ∆. While, the behavior of the total expected profit Θ is not monotone with α, it increases,
then, it decreases, when α is above a certain threshold. This can be explained by the fact that when the
non-retention probability α increases, the size of the system and the mean waiting time decrease, while the
average reneging rate increases. This implies also that the probability of normal busy period Pb decreases.
Therefore, the mean number of customers served is reduced. Moreover, the increase of Θ can be due to the
choice of ξ1 = 0.6 and ξ2 = 0.4 So, it is quite evident that retention probability has a positive effect on the
revenue generation and on the total expected profit of the system.
− From Table 20 and Figure 10, we remark that along the increasing N, total expected cost Γ, total

expected revenue ∆ increase. While, total expected profit Θ is not monotonic, it increases, then decreases
when N is above a certain threshold. Obviously, the larger the size of the system, the smaller the average
rate of balking, this generates a large number of customers served which engenders a positive impact on the
costs of the system and consequently on the economy of any firm. Note that the non-monotonicity of Θ can
be due to the choice of the impatience rates ξ1 and ξ2.

7. Conclusion

In this paper, we present a study of heterogeneous two-server queueing system with Bernoulli feedback,
multiple working vacations, balking, reneging and retention of reneged customers. It is supposed that
impatience timers of customers in the system depend on the state of the server. The equations of the steady
state probabilities are developed. The most important performance measures of the system are given. Then,
based on the performance analysis, we formulate a cost model to determine the effect of different system
parameters on the different characteristics as well as on total expected cost, total expected revenue, and
total expected profit of the system.

In this study, the positive impact of retention probability on both characteristics and costs of the system
under consideration has been shown. The present analysis has a large application in many real world systems
as telecommunication networks, call centers and production-inventory systems. For further work, it will be
interesting to consider a multiserver queueing system with heterogeneous service times, multiple working
vacations, and impatient customers depending on the state of the servers. Moreover, one can develop a
similar model wherein the servers are subject to sudden halt.
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