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1 Introduction

Let {Xn,k, k = 1, 2, . . . , n}, n ≥ 1, be a sequence of triangular arrays of random

variables (r.v.) with EXn,k = 0, EX2
n,k = 1, 1 ≤ k ≤ n, n ≥ 1 and EXn,kXn,j =

r(n), k, j = 1, 2, . . . , n, k 6= j, n ≥ 1 (0 ≤ r(n) < 1).

Suppose that (Xn,1, Xn,2, . . . , Xn,n) is n-variate Gaussian. Then {Xn,k, k =

1, 2, . . . , n}, n ≥ 1, is a triangular array of equi-correlated stationary Gaussian

(E.C.S.G.) sequence. For such a sequence define Mn =max(Xn,1, Xn,2, . . . , Xn,n),

n ≥ 1. Berman (1962) obtained the limit distribution of (Mn), properly nor-

malized, by giving a representation for Xn,k, 1 ≤ k ≤ n, n ≥ 1, in terms of an
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i.i.d. sequence of standard normal r.v.’s. Pickands (1962), Mittal and Ylvisaker

(1975), McCormick (1980) and Leadbetter et al. (1983) have established limit

theorems for (Mn), assuming various rates of convergence of correlation coeffi-

cient. Galambos (1978) has studied the limiting behaviour of (Mn), over random

stopping time Nn, under the condition that Nn
n

p→ τ , where τ is a positive valued

r.v. (
p→, stands for convergence in probability).

In this paper, we assume that (Nn) is a sequence of integer valued r.v.’s with

P (Nn = k) = pn,k, k = m,m + 1, . . ., n ≥ 1. When Nn = k, we suppose

that (XNn,1, XNn,2, . . . , XNn,Nn) reduces to (Xk,1, Xk,2, . . . , Xk,k), a k-dimensional

Gaussian random vector, with 0 means, unit variances and common covariance

r(k). We define, Ms,n as the s
th

highest among (Xn,1, Xn,2, . . . , Xn,n), n ≥ 1,

1 ≤ s ≤ m, and call it as the s
th

maxima. Note that Ms,n is the sth upper extreme

of Xn,1, Xn,2, . . . , Xn,n, n ≥ 1. In turn, for 1 ≤ s ≤ m, Ms,Nn can be considered

as the s
th

highest among (XNn,1, XNn,2, . . . , XNn,Nn). From the definition of Nn,

note that Ms,Nn is a well defined r.v. for 1 ≤ s ≤ m.

Throughout the paper, we assume that {Xn,k, 1 ≤ k ≤ n}, n ≥ 1, and (Nn)

are mutually independent and that (Nn
n

) converges in distribution to a proper

r.v.. Under this setup, in Section 2, we obtain the limit distribution of (Ms,Nn),

properly normalized. This is achieved through Berman’s representation described

below.

Let (Yn, n ≥ 0) be a sequence of i.i.d. standard normal r.v.’s. Then Berman

(1962) observed that Xn,k
d
= r

1
2

(n)Y0 + (1 − r(n))
1
2Yk, 1 ≤ k ≤ n, n ≥ 1, which

can be easily verified (here,
d
= means, distributionally same). Define M∗

s,n as

the s
th

highest among (Y1, Y2, . . . , Yn), n ≥ 1, s ≥ 1, so that M∗
s,Nn

is the s
th

maxima of (Y1, Y2, . . . , YNn), n ≥ 1, 1 ≤ s ≤ m. One can easily see that Ms,n
d
=

r
1
2

(n)Y0+(1−r(n))
1
2M∗

s,n, n ≥ 1, s ≥ 1. Using the above representation for E.C.S.G.

sequences, the limit distribution for (M1,n), properly normalized, (see, Theorem

A below) has been established, see eg. Galambos (1978) or Leadbetter et al.

(1983).
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Theorem A: (Theorem 3.8.1, Galambos (1978))

Given an E.C.S.G {Xn,k, 1 ≤ k ≤ n}, n ≥ 1, with M1,n = max1≤k≤nXn,k, one

can find constants

bn = (2 lnn)
− 1

2 & an =
1

bn
− bn

2
(ln lnn+ ln 4π), such that

(i) limP (
M1,n − an

bn
≤ x) = H(x) if r(n) lnn→ 0

(ii) limP (
M1,n − an

bn
≤ x) =

∫ ∞
−∞

Φ(
x− y√

2θ
)dH(y) if r(n) lnn→ θ,

(iii) limP (
M1,n − (1− r(n))

1
2an

r
1
2

(n)

≤ x) = Φ(x) if r(n) lnn→∞,

where H(x) = e−e
−x

, −∞ < x < ∞, is the Gumbel d.f., 0 < θ < ∞, and

Φ(x),−∞ < x <∞, is the standard normal d.f. .

In Section 3, we show through some examples, that the conditions of Theorem

2.1 are non vacuous. In the last section, we deduce the limit distribution of

(Ms,Nn), when Nn is a geometric r.v.. It is of interest to know that a good

amount of work has been done in the study of partial sums (SNn), where (Nn) is

a sequence of geometric r.v.’s, starting from the pioneering results of Gnedenko

(1983) and of Klebanov et al. (1985). In fact, Gnedenko (1983) also mentions

about the limit distribution of (MNn), when Nn is a geometric r.v.. In the study

of GI/G/1 queues, Szelki (1986) observed that the number of customers in the

waiting line is a r.v. having geometric distribution. Here, the maximal service

time correspond to the partial maxima of a geometric number of r.v.’s and it

plays an important role in the study of such queueing systems. As such, the last

section in devoted for the study of extremes, when Nn is geometric.

2 Main Results

Recall that {Xn,k, 1 ≤ k ≤ n} is a Gaussian vector with zero means, unit variances

and common covariance r(n), n ≥ 1 and that {Yn}, n ≥ 0, is a sequence of i.i.d.
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standard normal r.v.’s. Define ξn,k = r
1
2

(n)Y0 +(1−r(n))
1
2Yk, k = 1, 2, . . . , n, n ≥ 1.

Then we have the following lemma.

Lemma 2.1 If the sequence (Nn) of r.v’s is independent of {Xn,1, Xn,2, . . . ,

Xn,n}, n ≥ 1, and {Yn}, n ≥ 0, then {XNn,1, XNn,2, . . . , XNn,Nn}
d
= {ξNn,1, ξNn,2,

. . . , ξNn,Nn}.

Proof: We show that the two characteristic functions (ch.f.) are equal and hence

prove the lemma.

The ch.f. of (ξNn,1, ξNn,2, . . . , ξNn,Nn) is

Ee
i
∑Nn
j=1

tjξNn,j

=
∞∑
k=m

Ee
i
∑k
j=1 tjξk,j

P (Nn = k)

=
∞∑
k=m

Ee
i
∑k
j=1 tj

(
r
1
2
(k)

Y0+(1−r(k))
1
2 Yj

)
P (Nn = k)

=
∞∑
k=m

e
−
r(k)
2 (

∑k
j=1 tj)

2

e
−

(1−r(k))
2 (

∑k
j=1 t

2
j )

P (Nn = k)

=
∞∑
k=m

e
− 1

2 (
∑k
j=1 t

2
j+r(k)

∑k
j,l=1,j 6=l tjtl)

P (Nn = k) (2.1)

Similarly, the ch.f. of (XNn,1, XNn,2, . . . , XNn,Nn) is

Ee
i
∑Nn
j=1

tjXNn,j

=
∞∑
k=m

Ee
i
∑k
j=1 tjXk,j

P (Nn = k)

Recalling that (Xk,1, Xk,2, . . . , Xk,k) is k-variate Gaussian vector with zero means

unit variances and common covariance r(k), one gets,

Ee
i
∑Nn
j=1

tjXNn,j

=
∞∑
k=m

e
− 1

2 (
∑k
j=1 t

2
j+r(k)

∑k
j,l=1,j 6=l tjtl)

P (Nn = k) (2.2)

(2.1) and (2.2) complete the proof.

In the next lemma, we obtain the limit distribution of (M∗
s,Nn

), properly nor-

malized.

Lemma 2.2 Let bn = (2 lnn)
− 1

2 & an = 1
bn
− bn

2
(ln lnn+ ln 4π).
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If limP (Nn ≤ xn) = A(x), x ∈ R, where A is a d.f. with A(0+) = 0, then

limP (M∗
s,Nn
≤ an + bnx) = G

(s)
(x), x ∈ R, where

G
(s)

(x) =
s−1∑
j=0

∫ ∞
0

e−ze
−x (ze

−x
)
j

j!
dA(z).

Proof: Note that M∗
s,Nn

is the s
th

maxima of (Y1, Y2, . . . , YNn), where (Yn) is a

sequence of i.i.d. standard normal r.v.’s. From the fact that
M∗1,n−an

bn
converges

to a Gumbel law, by the univariate version of Theorem 2.1 of Barakat (1997)

one can show that limP (M∗
s,Nn
≤ an + bnx) = G(s)(x), x ∈ R. The details are

omitted.

Lemma 2.3 Let (Sn) be a sequence of r.v.’s and (Cn) and (Dn), Dn positive,

be sequences of real constants such that limP (Sn ≤ Cn + Dnx) = F (x), at all

continuity points of F(.). Let (C∗n) and (D∗n) be any two sequences of r.v.’s such

that C∗n−Cn
Dn

p→ λ and Dn
D∗n

p→ 1, where λ is some real constant. Then limP (Sn <

C∗n +D∗nx) = F (x+ λ), at all continuity points of F(.).

Proof: Note that

Sn − C∗n
D∗n

d
=

Dn

D∗n

(Sn − Cn
Dn

− C∗n − Cn
Dn

)
(2.3)

Sn−Cn
Dn

d→ X, a r.v. with d.f. F(.), and C∗n−Cn
Dn

p→ λ implies (by Slutsky’s theorem)

Sn−C∗n
Dn

d→ X − λ. Further, Dn
D∗n

p→ 1 implies that Sn−C∗n
D∗n

d→ X − λ or equivalently

that limP (Sn < C∗n +D∗nx) = F (x+ λ), at all continuity points of F(.).

Lemma 2.4 Let (Sn, Qn) be a sequence of random vectors such that

limP (Sn ≤ s,Qn ≤ q) = F (s)E(q), −∞ < s, q <∞,

where F(.) and E(.) are continuous d.f.s. Then for any x ∈ R,

limP (Sn +Qn ≤ x) =

∫ ∞
−∞

E(x− y)dF (y).

Proof: For proof, see, Lemma 2.9.1, Galambos (1978).

We now move on to the main result of this paper. Recall that Ms,Nn is the

s
th

maxima of (XNn,1, XNn,2, . . . , XNn,Nn), 1 ≤ s ≤ m.
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Theorem 2.1 Let limP (Nn ≤ xn) = A(x), x ∈ R, where A(.) is a d.f. with

A(0+) = 0. Then for bn = (2 lnn)
− 1

2 and an = 1
bn
− bn

2
(ln lnn+ ln 4π)

(i) P (Ms,Nn ≤ an + bnx)→ G(s)(x), x ∈ R, if r(Nn) lnn
p→ 0

(ii) P (Ms,Nn ≤ an + bnx)→
∫ ∞
−∞

Φ(
x− y√

2θ
)dG(s)(y), x ∈ R, if

r(Nn) lnn
p→ θ, where 0 < θ <∞ is a constant.

(iii) P (Ms,Nn ≤ (1− r(Nn))
1
2an + r

1
2

(Nn)
x)→ Φ(x), x ∈ R, if

r(Nn) lnn
p→∞.

Where G
(s)

(x) =
∑s−1

j=0

∫∞
0
e−ze

−x (ze
−x

)
j

j!
dA(z) and Φ(.) is the standard normal

d.f.

Proof: By Lemma 2.1, note that

Ms,Nn
d
= r

1
2

(Nn)
Y0 + (1− r(Nn))

1
2M∗

s,Nn

Define
Ms,Nn − an

bn
= UNn + VNn (2.4)

where UNn = (2r(Nn) lnn)
1
2Y0 and VNn = (1 − r(Nn))

1
2 M

∗
s,Nn

−(1−r(Nn))
− 1

2 an

bn
. Let

πn = 2r(Nn) lnn and Wn = Y0, n ≥ 1. Suppose that r(Nn) lnn
p→ 0. Then

πn
p−→ 0, Wn

p−→ Y0, imply that

UNn = (2r(Nn) lnn)
1
2Y0

p→ 0 (2.5)

Let a∗n = (1 − r(Nn))
− 1

2 an. Since r(Nn) lnn
p→ 0 as n → ∞, we have a∗n−an

bn

p−→ 0.

Using the facts that
M∗s,Nn−an

bn

d→ Y ∗ ∼ G
(s)

(.), a
∗
n−an
bn

p→ 0 and (1 − r(Nn))
1
2 p→ 1,

one gets from Lemma 2.3, VNn
d→ Y ∗. Along with (2.4) and (2.5), we have

limP (Ms,Nn < an + bnx) = G
(s)

(x), −∞ < x <∞. (2.6)

Consider the case, r(Nn) lnn
p→ θ, 0 < θ <∞. Define Wn = Y0, n ≥ 1. Note that

r(Nn) lnn
p→ θ, Wn

p→ Y0 imply that UNn
p→
√

2θY0. With a∗n as defined above,

we show that a∗n−an
bn

p→ θ. For any given ε > 0, we show that

limP
(
|a
∗
n − an
bn

− θ| < ε
)

= 1.
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Note that r(Nn) lnn
p→ θ, as n→∞, implies that

limP
(
|r(Nn) lnn− θ| < ε

)
= 1

⇔ limP
(

(1− θ + ε

lnn
)
1
2 < (1− r(Nn))

1
2 < (1− θ − ε

lnn
)
1
2

)
= 1

⇔ limP
(an
bn

(
(1− θ − ε

lnn
)
− 1

2 − 1
)
<
a∗n − an
bn

<
an
bn

(
(1− θ + ε

lnn
)
− 1

2 − 1
))

= 1 (2.7)

Expanding
(
1− θ−ε

lnn

)− 1
2

up to second term, one can observe that for some c > 0

and for n large,

an
bn

(
(1− θ − ε

lnn
)
− 1

2 − 1
)
' 2 lnn

(
(1 +

1

2

θ − ε
lnn

+
c

(lnn)2
)− 1

)
' θ − ε+

2c

lnn
> θ − 2ε.

Similarly, for n large, one can show that

an
bn

(
(1− θ + ε

lnn
)
− 1

2 − 1
)

< θ + 2ε.

In turn, (2.7) implies that

limP
(
θ − 2ε <

a∗n − an
bn

< θ + 2ε
)

= 1

or that a∗n−an
bn

p→ θ, as n→∞. Using the information that

M∗s,Nn−an(1−r(Nn))
− 1

2

bn

d→ Y ∗ and (1 − r(Nn))
1
2

p→ 1, by Lemma 2.3, we note that

P (VNn ≤ x) = G
(s)

(θ + x), x ∈ R. Applying Lemma 2.4, one can now show that

for any x ∈ R,

limP (
Ms,Nn − an

bn
≤ x) =

∫ ∞
−∞

Φ(
x− y√

2θ
)dG(s)(y)

Now consider the case, r(Nn) lnn
p→∞, as n→∞. We show that

ηn =
Ms,Nn − (1− r(Nn))

1
2 an

r
1
2

(Nn)

Converges to a normal r.v. as n→∞. Note that,

ηn = Y0 +
(1− r(Nn))

1
2

r
1
2

(Nn)

(M∗
s,Nn − an)

= Y0 + TNn .
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We complete the proof by showing that TNn
p→ 0, as n→∞. We have

TNn =
(1− r(Nn))

1
2 bn

r
1
2

(Nn)

(M∗
s,Nn
− an)

bn

But,

(1− r(Nn))
1
2 bn

r
1
2

(Nn)

=
(1− r(Nn))

1
2√

2r(Nn) lnn

p−→ 0, as n→∞,

since r(Nn) lnn
p→ ∞. Also

M∗s,Nn−an
bn

d→ Y ∗ ∼ G
(s)

(.). Slutsky’s theorem implies

that, TNn
p→ 0 as n→∞, and the proof is complete.

Remark 2.1 If N ′n is a Poisson r.v. with mean n, then identifying N ′n as a sum

of n i.i.d. Poisson r.v.’s with unit mean, by strong law of large numbers. We note

that N ′n
n
→ 1 almost surely. Taking Nn in Theorem 2.1 as Nn = N ′n +m (shifted

Poisson distribution), we see that Nn
n
→ 1 almost surely. In this case, Lemma 2.2

yields

limP (M∗
s,Nn ≤ an + bnx) = limP (M∗

s,n ≤ an + bnx)

=
s−1∑
j=0

e
−e
−x (e

−x
)
j

j!
= Hs(x), say,−∞ < x <∞.

which is the limit distribution of the s
th

maxima, Ms,n (non-random). Conse-

quently, Theorem 2.1 gives

limP (Ms,n ≤ an + bnx) = Hs(x), x ∈ R, if rn lnn→ 0

limP (Ms,n ≤ an + bnx) =

∫ ∞
−∞

Φ(
x− y√

2θ
)dHs(y), x ∈ R, if rn lnn→ θ

limP (Ms,n ≤ (1− r(n))
1
2an + r

1
2

(n)x) = Φ(x), x ∈ R, if rn lnn→∞.

Similarly, if N ′n is Binomial (n2, 1
n
), one can show that N ′n is the sum of n i.i.d.

Binomial (n, 1
n
) r.v.’s. By strong law, one gets, N ′n

n
→ 1 almost surely. Defining

Nn = N ′n+m, one can precisely get the results deduced above (under the setup of

Poisson distribution). When N ′n is a geometric r.v. with P (N ′n = k) = 1
n
(1− 1

n
)
k
,

k = 0, 1, . . ., the form of limit distribution are given in the last section.
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3 Existence of sequences
(
r(Nn)

)
for validity of

the main result

In this section, we present examples of sequences (r(n)), which satisfy

r(Nn) lnn
p→ 0; r(Nn) lnn

p→ θ, 0 < θ <∞ and r(Nn) lnn
p→∞.

One may recall that in Theorem 2.1 above, the limit distribution of (Ms,Nn),

normalized, have been obtained under these conditions.

Example 3.1 Let r(n) = 1
nα

, n ≥ 2, α > 0. We show that r(Nn) lnn
p→ 0, as

n→∞. For any given ε > 0, we have

P (r(Nn) lnn > ε) = P (r(Nn) >
ε

lnn
) = P

(
Nn < (

lnn

ε
)

1
α

)
= P

(Nn

n
<

1

n
(
lnn

ε
)

1
α

)
Given any δ > 0, but small, one can find a n0 > 0 such that (lnn)

1
α

ε
1
α n

< δ for all

n ≥ n0. Consequently, for all n ≥ n0

P (r(Nn) lnn > ε) ≤ P (
Nn

n
≤ δ)

In turn,

lim supP (r(Nn) lnn > ε) ≤ A(δ),

where A(.) is the limit distribution of (Nn
n

). Since δ is arbitrary, as δ → 0. One

gets

lim supP (r(Nn) lnn > ε) ≤ A(0+), (3.1)

From Theorem 2.1, note that A(0+) = 0. Consequently, (3.1) implies that

r(Nn) lnn
p→ 0

Example 3.2 Let r(n) = θ
lnn

, n ≥ 2, 0 < θ <∞. We show that for any ε > 0,

limP (|r(Nn) lnn− θ| < ε) = 1,
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which is equivalent to r(Nn) lnn
p→ θ. The event(

|r(Nn) lnn− θ| < ε
)
⇔

(
θ − ε < θ lnn

lnNn

< θ + ε
)

⇔
( θ

θ + ε
lnn < lnNn <

θ

θ − ε
lnn
)

Consequently, one can find a δ > 0, such that(
|r(Nn) lnn− θ| < ε

)
⊇
(
n(1−δ) ≤ Nn ≤ n(1+δ)

)
In turn,

p
(
|r(Nn) lnn− θ| < ε

)
≥ P

(
n−δ ≤ Nn

n
≤ nδ

)
(3.2)

For any given ε1 > 0, but small and M > 0, but larger, one can find a n1 > 0,

such that n
−δ
< ε1 and n

δ
> M for all n ≥ n1. Hence, for n ≥ n1,

P
(
n−δ ≤ Nn

n
≤ nδ

)
≥ P

(
ε1 ≤

Nn

n
≤M

)
,

which implies that

limP
(
n−δ ≤ Nn

n
≤ nδ

)
≥ A(M)− A(ε1),

Taking ε1 → 0, M →∞ and using the fact that A(0+) = 0, one gets

limP
(
n−δ ≤ Nn

n
≤ nδ

)
= 1,

which along with (3.2) yields, the required result.

Example 3.3 Take r(n) = ρ, n ≥ 2, 0 < ρ < 1. Then note that r(Nn) is

degenerate at ρ. Consequently, r(Nn) lnn
p→∞ as n→∞.

4 Limit distribution of (Ms,Nn), when Nn is a ge-

ometric r.v.

In the study of partial sums and partial maxima of random number of r.v.’s,

considerable work has been done, in particular, when (Nn) is a sequence of geo-

metric r.v.’s, as mentioned in the introductory section. In this section, we obtain
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the limit distribution of (Ms,Nn) when Nn has the p.m.f. P (Nn = k) = pnq
k−m
n ,

k = m,m+1, . . .; pn = 1
n
, n ≥ 2. Let N ′n be a r.v. with p.m.f. P (N ′n = k) = pnq

k

n,

k = 0, 1, 2, . . .; pn = 1
n
, n ≥ 2. Note that Nn = N ′n +m and that

(
N ′n
n

)
converges

to a unit exponential r.v.. Consequently,
(
Nn
n

)
also convergence to a unit expo-

nential r.v. and as such, in Theorem 2.1, A(z) = 1 − e−z , z > 0. From Lemma

2.2, we hence get

limP
(
M∗

s,Nn ≤ an + bnx
)

= e
x

s∑
j=1

1

(1 + ex)j
= G

(s)

(x), −∞ < x <∞.

It is interesting to note that the random maxima, properly normalized, i.e.

(M∗
1,Nn

), converges to G
(1)

(x) = ex

1+ex
, −∞ < x < ∞, which is the logistic distri-

bution. Also, Theorem 2.1 yields

limP (Ms,Nn ≤ an + bnx) = G
(s)

(x), if r(Nn) lnn
p→ 0,

=
s∑
j=1

∫ ∞
−∞

Φ
(x− y√

2θ

)
d
( e

y

(1 + ey)j

)
if

r(Nn) lnn
p→ θ, 0 < θ <∞ and

= Φ(x) if r(Nn) lnn
p→∞.

Remark 4.1 The above result continues to hold whenever npn → 1 as n→∞.
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