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Abstract.In this paper, we obtain estimators for the residual entropy function
of exponential distribution under two censoring schemes namely progressive
and double censoring respectively using Bayes and Maximum likelihood esti-
mation procedures. We compared the performance of the estimators using a
simulation study.
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1 Introduction

In the recent past, many researchers have taken a keen interest in the measure-
ment of uncertainty associated with a probability distribution. Of particular
interest in Probability and Statistics is the notion of entropy, introduced by
Shannon (1948). If X is a non-negative random variable having an absolutely
continuous distribution function F with probability density function f , then
the Shannon’s entropy associated with the random variable X is defined as

H(X) = H(f) = −
∞∫

0

f(x) log f(x)dx. (1)

The entropy measures the uniformity of a distribution. As H(f) increases,
f(x) approaches to uniform. Consequently, the concentration of probabilities
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decreases and it becomes more difficult to predict an outcome of a draw from
f(x). In fact, a very sharply peaked distribution has a very low entropy,
whereas if the probability is spread out the entropy is much higher. In this
sense H(X) is a measure of uncertainty associated with f .

Since this entropy is not applicable to a system that has survived for some
units of time, the concept of residual entropy has been developed in the lit-
erature. Ebrahimi and Pellerey (1995) and Ebrahimi (1996) introduced the
concept of residual entropy in terms of conditional Shannon’s measure. For a
non-negative random variable X representing the life time of a component, the
residual entropy function is the Shannon’s entropy associated with the random
variable X − t, truncated at t ≥ 0, and is defined as

H(f, t) = −
∞∫

t

f(x)

F (t)
log

f(x)

F (t)
dx

= 1− 1

F (t)

∞∫

t

f(x) log h(x)dx, F (t) > 0

(2)

where F (t) = P (X > t) denotes the survival function and h(x) = f(x)

F (x)
is the

hazard function of X , respectively. Navaro et al (2004) has established that
if H(f, t) is increasing in t then H(f, t) determines the distribution uniquely.
Given that an item has survived up to time t, H(f, t) measures the uncertainty
about its remaining life. That is, H(f, t) measures concentration of conditional
probabilities. For a discussion of the properties and applications of residual
entropy we refer to Ebrahimi and Kirmani (1996), Nair and Rajesh (1998) and
Asadi and Ebrahimi(2000).

It is clear that for practical purposes, we need to develop some infer-
ence techniques about this measure. This research area has been initiated by
Ebrahimi(1997), with the proposal of a test for exponentiality against DURL
(IURL) alternatives. Belzunce et.al. (2001) proposed nonparametric estima-
tors of the residual entropy using smoothing techniques.

The aim of this paper is to study estimation of residual entropy H(f, t) of
exponential distribution under two censoring schemes namely progressive and
double censoring respectively using Bayes and Maximum likelihood estima-
tion procedures. Bayes estimators have been developed under squared error
loss function as well as under LINEX loss functions. In the next Section, we
consider the estimation under progressively type-II sample. First, we discuss
the Bayes estimation. Then the maximum likelihood estimator is obtained.
In Section 3, the Bayes estimator and maximum likelihood estimator under
double censoring scheme are discussed. In Section 4, the performance of the
estimators are compared using a simulation study.
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2 Estimation of H under Progressively Type-

II sample

In this section we obtain the Bayes estimate and MLE of H(f, t) under pro-
gressively type II censored scheme in which n units are placed on a test at
time zero, with m failures to be observed. When the first failure is observed,
r1 of the surviving units are randomly selected and removed. At the second
observed failure, r2 of the surviving units are randomly selected and removed.
This experiment stops at the time when the mth failure is observed and the
remaining rm = n − r1 − r2 − − rm−1 − m surviving units all are removed.
Let X1, ..., Xm be a progressively type-II censored sample from the exponential
distribution with density function

f (x, λ) = λe−λx, x > 0, λ > 0. (3)

For the model (3), residual entropy simplifies to

H (f, t) = 1− log λ, λ > 0. (4)

The likelihood function corresponding to this set-up can be written as

l (x|θ) = k

m∏
i=1

f (xi:m:n) [1− F (xi:m:n)]ri

where

k = n(n− 1− r1)(n− 2− r1 − r2)...(n−m + 1− r1 − ...− rm−1).

Substituting (3) in the above equation, the likelihood function gives

l (x|θ) = kλm exp

{
−λ

(
m∑

i=1

xi (1 + ri)

)}
. (5)

2.1 Bayes estimator

In the Bayesian approach to statistical inference the posterior distribution
summarizes the information about a parameter. This distribution depends on
a probability model and a prior distribution and is conditional on the observed
data.
The likelihood function provides a conjugate prior for λ namely

g(λ) = C1λ
p−1 exp(−τλ), p, τ, λ > 0. (6)

The symbol C with various suffixes stands for the normalizing constants. Com-
bining (5) and (6) and using Bayes theorem, the posterior density turns out
to be

f(λ|x) = C2λ
N−1 exp(−λT ), λ ≥ 0 (7)
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where

N = m + p, T = τ +
m∑

i=1

xi (1 + ri).

Replacing λ in terms of H by that of Eq.(4), we obtain the posterior density
function of H as

f (H|x) = [C3(0)]−1 exp [(1−H) N − T exp (1−H)] ,−∞ < H < ∞ (8)

where

C3(d) =

∞∫

−∞

Hd exp [(1−H) N − T exp (1−H)] dH. (9)

From a decision-theoretic viewpoint, in order to select a single value as rep-
resenting our best estimator of H, a loss function must be specified. Under
squared-error loss, the Bayes estimator of residual entropy is the mean of the
posterior density given by

Hbsp = 1 + log T − Polygamma [0, N] (10)

and the posterior risk (minimum posterior expected loss) of Hbsp is the posterior
variance given by

Var
(
Hbsp

)
= Polygamma [1, N] . (11)

Polygmma [n, x] gives the nth derivative of the digamma function

Ψ (x) =
d log Γ (x)

dx
, x > 0.

Another loss function in popular use is the LINEX loss function(LLF) intro-
duced by Varian (1975). The LINEX loss function may be expressed as

L(δ) ∝ ecδ − cδ − 1, c 6= 0, (12)

where δ = β̂−β. The sign and magnitude of c reflects the direction and degree
of asymmetry, respectively. The Bayes estimator for β relative to LINEX loss
function, denoted by β̂L , is given by

β̂L = −1

c
ln Eβ

(
e−cβ

)
, (13)

provided that Eβ

(
e−cβ

)
exists and is finite, where Eβ denotes the expected

value. Under LINEX loss function, the Bayes estimate of H using (13) is

Ĥbxp =
1

a
ln G1 (14)

where

G1 = [C3(0)]−1

∞∫

−∞

exp [aH + (1−H) N − T exp (1−H)] dH. (15)

To evaluate (9) and (15) we seek numerical integration.



72 Jeevanand and Sathar

2.2 Maximum likelihood estimator

The likelihood function of H in this set-up can be expressed as

l (x|H) = C4 exp

(
m (1−H)−

m∑
i=1

xi (1 + ri) exp (1−H)

)
.

We derive the MLE, using the usual procedure and is given by

Hmlp = 1− log




m
m∑

i=1

xi (1 + ri)


 . (16)

It may be noted that Hmlp is consistent and asymptotically normal with

V ar
(
Hmlp

)
=

1

m
. (17)

3 Estimation of H under double censored sam-

ple

In this section, we obtain the Bayes estimate and MLE of H(f, t) under double
censored scheme in which a certain number (or a proportion) of observations
are censored on the left or right or both. For example, in early childhood
learning centres, interest often focuses upon testing children to determine when
a child learns to accomplish certain specified tasks. The age at which a child
learns the task would be considered the time-to-event. Often, some children
can already perform the task when they start their study. Such event times
are considered left censored. Some children undergoing testing, may not learn
the task during the entire study period, in which case such event times would
be right censored. Thus, the sample would also be doubly censored.

Consider a doubly censored sample yr+1, yr+2, ..., yn−s with r observations
censored on the left and s observations censored on the right, where r =
[nq1] + 1, and s = [nq2] + 1, from an Exponential distribution with density
given by (3). The likelihood of the sample is given by

l (x|θ) = (F (Yr+1))
r (1− F (Yn−s))

s
n−s∏

i=r+1

f (Yi).

Substituting (3) in the above equation, the likelihood function gives

l (x|λ) = (1− exp (−λyr+1))
r exp

(
−λ

(
n−s∑

i=r+1

yi + syn−s

))
λn−r−s. (18)
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3.1 Bayes estimator

With a gamma prior as in (6) and using (18), the posterior density of λ can
be obtained as

f (λ|x) = C5 (1− exp (−λyr+1))
r exp (−λZ) λN−1, λ ≥ 0 (19)

where

N = p + n− r − s, Z = τ +
n−s∑

i=r+1

yi + syn−s.

The posterior distribution of H is derived as

f (H|x) = [C6(0)]−1
(
1− e−yr+1(e1−H)

)r

e(N(1−H)−Z(e1−H)),−∞ < H < −∞
(20)

where

C6(d) =

∞∫

−∞

Hd
(
1− e−yr+1(e1−H)

)r

e(N(1−H)−Z(e1−H))dH. (21)

Under squared-error loss, the Bayes estimator of H is the mean of the posterior
density given by

Hbsd =
C6(1)

C6(0)
(22)

with Bayes risk

V ar
(
Hbsd

)
=

C6(2)

C6(0)
− (

Hbsd

)2
. (23)

Under LINEX loss function, the Bayes estimate of H is

Ĥbxd =
1

a
ln G2 (24)

where

G2 = [C6(0)]−1

∞∫

−∞

(
1− e−yr+1(e1−H)

)r

e(aH+N(1−H)−Z(e1−H))dH. (25)

To evaluate (21) and (25) we seek numerical integration.

3.2 Maximum likelihood estimator

In this set-up, we derive the MLE estimate of λ, denoted by λmld, by solving
the following equation

ryr+1e
−λyr+1

1− e−λyr+1
+

n− (r + s)

λ
− Z = 0. (26)

The equations can be solved numerically using an iterative procedure and an
estimate of the residual entropy function H is

Hmld = 1− log (λmld) . (27)
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4 Simulation results

In this section, we present the results of a simulation study in order to compare
the performance of these estimators. In order to assess the performance of the
estimators of the residual entropy, we perform a simulation study of 2000
samples of sizes n = 25, 50, 100 and 500 generated from (3) for values of λ =
0.2, 0.4, 0.75 and 1.25. We present the simulation results concerning the mean
and mean square errors of all these estimators.

Table 1: Means and MSEs (in parentheses) of the estimates of H under
Progressive censoring

λ = 0.2 λ = 0.4 λ = 0.75 λ = 1.25

True H 2.60944 1.91629 1.28768 0.77686

n = 20 Hbsp 2.60871 1.90913 1.30937 0.76578
(0.0364) (0.03916) (0.03422) (0.04337)

m = τ = 0 Hbxp 2.62731 1.92772 1.32796 0.78437
(0.03672) (0.03924) (0.03537) (0.04330)

Hmlp 2.58858 1.92137 1.27581 0.79015
(0.03684) (0.04593) (0.04392) (0.04745)

n = 30 Hbsp 2.61809 1.91542 1.2807 0.76594
(0.03304) (0.02383) (0.03065) (0.03114)

m = τ = 1 Hbxp 2.63087 1.92821 1.29348 0.77872
(0.03343) (0.02397) (0.03064) (0.03102)

Hmlp 2.58524 1.88519 1.27265 0.77792
(0.02538) (0.03309) (0.03415) (0.02605)

n = 50 Hbsp 2.59493 1.90332 1.27308 0.77202
(0.01691) (0.02086) (0.0181474) (0.01891)

m = τ = 2 Hbxp 2.60293 1.91133 1.28108 0.78003
(0.01674) (0.02071) (0.01798) (0.01889)

Hmlp 2.58565 1.90772 1.28565 0.77046
(0.01912) (0.02635) (0.01775) (0.01565)

n = 100 Hbsp 2.60193 1.9190 1.28447 0.77886
(0.00796) (0.00855) (0.00740) (0.00689)

m = 1, τ = 2 Hbxp 2.60621 1.92328 1.28875 0.78314
(0.00791) (0.00858) (0.00739) (0.00693)

Hmlp 2.61813 1.91714 1.28219 0.75960
(0.00988) (0.00966) (0.00857) (0.00753)
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Table 2: Means and MSEs (in parentheses) of the estimates of H under
Double censoring

λ = 0.2 λ = 0.4 λ = 0.75 λ = 1.25

True H 2.60944 1.91629 1.28768 0.77686

n = 20 Hbsd 2.59913 1.90242 1.27694 0.73742
(0.14884) (0.14489) (0.16365) (0.13656)

m = τ = 0 Hbxd 2.67164 1.97493 1.34945 0.80992
(0.15260) (0.14815) (0.16735) (0.13610)

Hmld 2.55712 1.8389 1.20382 0.73565
(0.13545) (0.17133) (0.17056) (0.17063)

n = 30 Hbsd 2.59566 1.88033 1.24015 0.80022
(0.13189) (0.17158) (0.1057) (0.12226)

m = τ = 1 Hbxd 2.66817 1.94278 1.3026 0.86268
(0.13515) (0.17099) (0.10366) (0.12908)

Hmld 2.51622 1.86637 1.17234 0.71207
(0.14945) (0.14637) (0.16772) (0.13581)

n = 50 Hbsd 2.44047 1.80808 1.2728 0.79488
(0.18229) (0.12531) (0.11485) (0.06354)

m = τ = 2 Hbxd 2.49532 1.86292 1.32765 0.84973
(0.16676) (0.11645) (0.11622) (0.06852)

Hmld 2.51241 1.84054 1.22827 0.74857
(0.173415) (0.165477) (0.13743) (0.12130)

n = 100 Hbsd 2.60122 1.90008 1.2798 0.775083
(0.14525) (0.15772) (0.14603) (0.147799)

m = 1, τ = 2 Hbxd 2.67373 1.97259 1.35231 0.84759
(0.14932) (0.16063) (0.15015) (0.15279)

Hmld 2.53183 1.84679 1.22106 0.69714
(0.16961) (0.15466) (0.15845) (0.15329)

In all the simulation results presented here, the bias of an estimator can be
determined as the average value of the estimate report in the table - True
value. The variance of an estimator was determined as the sample variance
obtained from all the simulations carried out. Finally, the mean square error
of estimator is (variance of the estimator + (Bias)2). The means and mean
squared errors (in parentheses) of the estimators are presented in Tables 1 and
2.

The Bayes estimator was evaluated for the prior hyper-parameters m, τ =
0, 1 and 2. It is revealed that the Bayes estimator does not seem very sensitive
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Figure 1: Estimates of Residual entropy (simulated data)

with variation of the prior parameters m and τ . It is to be noted that the bias
and MSE of the Bayes estimator become smaller as the sample size increases.
In most of the cases, the performance of Bayes estimator is better in terms of
MSE compared to MLE estimators.

In estimating the residual entropy of exponential distribution under the
two censoring schemes discussed above, we advocate the use of MLE for small
samples and Bayes estimator for large samples. It is to be noted that the per-
formance of the estimators under both loss functions are more or less similar.
In Figure 1, we plot these estimates of residual entropy, for various values of
λ. Figure 1 shows the performance of the estimators using different methods
are similar.
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