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Abstract. This article presents a review on modified second-order slope-
rotatable designs (SOSRDs). It presents different methods of construction of
modified SOSRDs, using central composite designs, balanced incomplete block
designs (BIBD), pairwise balanced designs (PBD), symmetrical unequal block
arrangements (SUBA) with two unequal block sizes etc. Minimum number of
design points for modified SOSRDs are listed among the methods of construc-
tions available in the literature for a fixed numbers of covariates.
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1 Introduction

Response surface methodology is a statistical technique very useful in design
and analysis of scientific experiments. In many experimental situations the
experimenter is concern with explaining certain aspects of a functional rela-
tionship Y = f(x1, x2, . . . , xv)+e, where Y is the response, x1, x2, . . . , xv are v
factors and e is the random error. The function f(·) is called response surface
or response function. Designs, which are used, for the study of response sur-
face methods, are called response surface designs. Response surface methods
are useful where several independent variables influence a dependent variable.
The independent variables are assumed to be continuous and controlled by the
experimenter. The response is assumed to be as random variable. For exam-
ple, if a chemical engineer wishes to find the temperature (x1) and pressure
(x2) that maximizes the yield (response) of his process, the observed response
Y may be written as a function of the factors temperature (x1) and pressure
(x2) as Y = f(x1, x2) + e.

In many applications of Response Surface Methodology, good estimation of
the derivatives of the response function may be as important or perhaps more
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important than estimation of mean response. Certainly, the computation of a
stationary point in a second-order analysis or the use of gradient techniques
for example, steepest ascent or ridge analysis depends heavily on the partial
derivatives of the estimated response function with respect to the design vari-
ables. Since designs that attain certain properties in Y (estimated response)
do not enjoy the same properties for the estimated derivatives (slopes), it is
important for the user to consider experimental designs that are constructed
with the derivatives in mind.

The concept of rotatability, which is very important in response surface
second-order designs, was proposed by [7]. A design is said to be rotatable if the
variance of the response estimate is a function only of the distance of the point
from the design center. The study of rotatable designs is mainly emphasized
on the estimation of differences of yields and its precision. Estimation of
differences in responses at two different points in the factor space will often
be of great importance. If differences in responses at two points close together
is of interest then estimation of local slope (rate of change) of the response is
required. Estimation of slopes occurs frequently in practical situations. For
instance, there are cases in which we want to estimate rate of reaction in
chemical experiment, rate of change in the yield of a crop to various fertilizer
doses, rate of disintegration of radioactive material in an animal etc ([35]).

[15] introduced slope-rotatable central composite designs (SRCCD). For the
central composite designs they modified [7] rotatability to slope-rotatability
simply by adjusting the axial point distance (a), so that the variance of the
estimated pure quadratic coefficients is one-fourth the variance of the esti-
mated mixed second-order coefficients. Since the first work of [6] in this
slope area, many research papers have been subsequently published such as
[34, 33, 32, 15, 30, 37, 27, 22, 68, 69, 29, 31, 38] and so on. [35] extended
the concept of slope-rotatability to slope-rotatability overall directions. [36]
studied slope-rotatable designs for estimating the slope of response surfaces in
experiments with mixtures. A measure and graphical method for evaluating
slope-rotatability in response surface designs was suggested by [28]. Slope-
rotatability with correlated errors was studied by [9].

Different methods of constructions of SOSRDs were suggested by various
authors, including [41, 42, 43, 44, 45, 50, 54, 55, 56, 57, 58, 59, 60, 62, 63, 61,
64, 65, 66, 67, 2, 5, 3, 4] so on.

Specifically, [46] introduced modified slope-rotatable central composite de-
signs. Different methods of constructions of modified SOSRDs were suggested
by [47, 48, 49, 53] and so on.

This article presents a review on modified SOSRDs. It presents different
methods of construction of modified SOSRDs, using central composite designs,
BIBD, PBD, SUBA with two unequal block sizes etc. Minimum number of
design points for modified SOSRDs are listed among the methods of construc-
tions available in the literature for a fixed numbers of covariates.
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2 Second-order slope-rotatable designs

A second-order response surface model is D = ((xiu)) for fitting,

Yu = b0 +
v∑
i=1

bixiu +
v∑
i=1

biix
2
iu +

∑
i<j

bijxiuxju + eu (2.1)

where xiu denotes the level of the ith factor (i = 1, 2, . . . , v) in the uth run
(u = 1, 2, . . . , N) of the experiment, eu’s are uncorrelated random errors with
mean zero and variance σ2.

Definition 2.1 (Second-order slope-rotatable design)
A second-order response surface design D is said to be a SOSRD, if the variance
of the estimate of first order partial derivative (∂Ŷu/∂xi) with respect to each
of independent variables (xi) is only a function of the distance (d2 =

∑
i x

2
iu)

of the point (x1u, x2u, . . . , xvu) from the origin (centre) of the design. Such a
spherical variance function for estimation of slopes in the second-order response
surface is achieved if the design points satisfy the following conditions ([15]).

N∑
u=1

v∏
i=1

xαi
iu = 0 if any αi is odd, for

∑
αi ≤ 4 (2.2)

(i)
N∑
u=1

x2
iu = constant = Nλ2,

(ii)
N∑
u=1

x4
iu = constant = cNλ4, for all i (2.3)

N∑
u=1

x2
iux

2
ju = constant = Nλ4, for i 6= j (2.4)

(c+ v − 1)λ4 > vλ2
2 (2.5)

λ4[v(5− c)− (c− 3)2] + λ2
2[v(c− 5) + 4] = 0 (2.6)

where c, λ2 and λ4 are constants and the summation is over the design points.
The variances and covariances of the estimated parameters are,

V (b̂0) =
λ4(c+ v − 1)σ2

N [λ4(c+ v − 1)− vλ2
2]
,

V (b̂i) =
σ2

Nλ2

, V (b̂ij) =
σ2

Nλ4

,
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V (b̂ii) =
σ2

(c− 1)Nλ2

[λ4(c+ v − 2)− (v − 1)λ2
2

λ4(c+ v − 1)− vλ2
2

]
,

Cov(b̂0, b̂ii) =
−λ2σ

2

N [λ4(c+ v − 1)− vλ2
2]
,

Cov(b̂ii, b̂ij) =
(λ2

2 − λ4)σ
2

(c− 1)Nλ4[λ4(c+ v − 1)− vλ2
2]
,

and other covariances are zero.

V
(∂Ŷ
∂xi

)
= V (b̂i) + 4x2

iV (b̂ii) +
∑
j 6=i

x2
jV (b̂ij)

=
1

N

[λ4 + λ2d
2

λ2λ4

]
σ2.

3 Construction of modified SOSRD

The usual method of construction of SOSRD is to take combinations with
unknown constants, associate a 2v factorial combinations or a suitable fraction
of it with factors each at ±1 levels to make the level codes equidistant. All
such combinations form a design. Generally SOSRDs need at least five levels
(suitably coded) at 0, ±1, ±a for all factors (0,0, . . ., 0—chosen center of the
design, unknown level a to be chosen suitably to satisfy slope-rotatability).
Generation of design points this way ensures satisfaction of all the conditions
even though the design points contain unknown levels.

Alternatively by putting some conditions indicating some relation among∑
x2
iu,
∑
x4
iu and

∑
x2
iux

2
ju some equations involving the unknown levels are

obtained and their solution gives the unknown levels. In SOSRD the condi-

tions used are V (bij) = 4V (bii) and c =
∑
x4

iu∑
x2

iux
2
ju

. Other conditions are also

possible though, it seems, not yet exploited. We shall investigate the condi-
tion (

∑
x2
iu)

2 = N
∑
x2
iux

2
ju i.e. (Nλ2)

2 = N(Nλ4) i.e., λ2
2 = λ4 to get another

series of symmetrical response surface designs which provide more precise es-
timates of response at specific points of interest than what is available from
the corresponding existing designs. By applying this new condition λ2

2 = λ4

in equation (2.6), we get c = 1 or c = 5. The non-singularity condition (2.5)
leads to c = 5. It may be noted λ2

2 = λ4 and c = 5 are equivalent conditions.
Further,

V (b̂0) =
(v + 4)σ2

4N
, V (b̂i) =

σ2

N
√
λ4

,

V (b̂ij) =
σ2

Nλ4

, V (b̂ii) =
σ2

4Nλ4

,

Cov (b̂0, b̂ii) =
−σ2

4N
√
λ4

.
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It is seen that if λ2
2 = λ4, then Cov(b̂ii, b̂ij) = 0 and other covariances are zero.

These modifications of the variances and covariances affect the variance of
estimated response at specific points considerably.

V
(∂Ŷ
∂xi

)
=
[√λ4 + d2

Nλ4

]
σ2.

3.1 Modified SRCCD

The most widely used design for fitting a second-order model is the central com-
posite design. Central composite designs are constructed by adding suitable
factorial combinations to those obtained from 1

2p×2v fractional factorial design
(here 2t(v) = 1

2p × 2v denotes a suitable fractional replicate of 2v, in which no
interaction with less than five factors is confounded). In coded form the points
of 2t(v) factorial have coordinates (±1,±1, . . . ,±1) and 2v axial points have co-
ordinates of the form (±a, 0, . . . , 0), (0,±a, . . . , 0), . . . , (0, 0, . . . ,±a) etc., and
n0 be the number of central points. The axial points may be replicated na
times and central points to be replicated n0 times. A central composite design

will give a v dimensional modified SRCCD in N = (2t(v)+2naa2)2

2t(v) design points
if,

a4 =
2t(v)+1

na
, (3.1)

n0 =
(2t(v) + 2naa

2)2

2t(v)
− (2t(v) + 2vna) and n0 turns out to be an integer.

(3.2)

Note: If n0 is a positive integer then modified SOSRD using central composite
designs exists. If n0 is a non-integral positive real number, we take [n0] or
[n0] + 1 central points, where [n0] is Gauss symbol denoting integral part of n0

and construct nearly modified SOSRD.

3.2 Modified SOSRD using BIBD

Balanced incomplete block design. A BIBD denoted by (v, b, r, k, λ) is an
arrangement of v treatments in b blocks each containing k(< v) treatments,
if (i) every treatment occurs at most once in a block, (ii) every treatment
occurs in exactly r blocks and (iii) every pair of treatments occurs together in
λ blocks.

Let (v, b, r, k, λ) be a BIBD, 2t(k) denotes a fractional replicate of 2k with +1
or −1 levels in which no interaction with less than five factors is confounded.
[1− (v, b, r, k, λ)] denote the design points generated from the transpose of the
incidence matrix of BIBD. [1 − (v, b, r, k, λ)]2t(k) are the b2t(k) design points
generated from BIBD by “multiplication” (see [40, pp. 298–300]). Let n0 be
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the number of central points in modified SOSRD and ∪ denotes combination
of the design points generated from different sets of points.

Let (a, 0, 0, . . . , 0)21 denote the design points generated from (a, 0, 0, . . . , 0)
point set. Repeat this set of additional design points say na times when r < 5λ.
Consider the design points, [1− (v, b, r, k, λ)]2t(k) ∪na(a, 0, 0, . . . , 0)21 ∪n0 will

give a v dimensional modified SOSRD in N = (r2t(k)+2naa2)2

λ2t(k) design points if,

a4 =
(5λ− r)2t(k)−1

na
, (3.3)

n0 =
(r2t(k) + 2naa

2)2

λ2t(k)
− [b2t(k) + 2nav] (3.4)

and n0 turns out to be an integer.
Consider the design points, [1− (v, b, r, k, λ)]2t(k)∪n0 will give a three level

v dimensional modified SOSRD in N = (r2t(k))2

λ2t(k) design points when r = 5λ, if,

n0 =
(r2t(k))2

λ2t(k)
− b2t(k) (3.5)

and n0 turns out to be an integer.
Let (a, a, . . . , a)2t(v) denote the design points generated from (a, a, . . . , a)

point set. Repeat this set of additional design points say na times when r > 5λ.
Consider the design points, [1 − (v, b, r, k, λ)]2t(k) ∪ na(a, a, a, . . . , a)2t(v) ∪n0

will give a v dimensional modified SOSRD in

N =
(r2t(k) + na2

t(v)a2)2

λ2t(k) + na2t(v)a4

design points if,

a4 =
(r − 5λ)2t(k)−t(v)−2

na
, (3.6)

n0 =
(r2t(k) + na2

t(v)a2)2

λ2t(k)+na2t(v)a4
− (b2t(k) + na2

t(v)) (3.7)

and n0 turns out to be an integer.

3.3 Modified SOSRD using SUBA with two unequal
block sizes

SUBA with two unequal block sizes: The arrangement of v treatments
in b blocks where b1 blocks of size k1, and b2 blocks of size k2 is said to be a
SUBA with two unequal block sizes, if

(i) every treatment occurs biki

v
blocks of size ki (i = 1, 2), and
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(ii) every pair of first associate treatments occurs together in u blocks of size
k1 and in (λ − u) blocks of size k2 while every pair of second associate
treatments occurs together in λ blocks of size k2.

From (i) each treatment occurs in ( b1k1
v

) + ( b2k2
v

) = r blocks in the whole
design. (v, b, r, k1, k2, b1, b2, λ) are known as the parameters of the SUBA with
two unequal block sizes.

Let (v, b, r, k1, k2, b1, b2, λ), k = max(k1, k2), and b1 + b2 = b be a SUBA
with two unequal block sizes. 2t(k) denotes a resolution V fractional factorial
of 2k with +1 or −1 levels, such that no interaction with less than five factors
is confounded. [1 − (v, b, r, k1, k2, b1, b2, λ)] denote the design points gener-
ated from the transpose of incidence matrix of SUBA with two unequal block
sizes, [1−(v, b, r, k1, k2, b1, b2, λ)]2t(k) are the b2t(k) design points generated from
SUBA with two unequal block sizes by ‘multiplication’.

Let (a, 0, 0, . . . , 0)21 denote the design points generated from (a, 0, 0, . . . , 0)
point set. Repeat this set of additional design points say na times when r < 5λ.
Consider the design points, [1− (v, b, r, k1, k2, b1, b2, λ)]2t(k)∪na(a, 0, . . . , 0)21∪
(n0) will give a v dimensional modified SOSRD in N = (r2t(k)+2naa2)2

λ2t(k) design
points if,

a4 =
(5λ− r)2t(k)−1

na
, (3.8)

n0 =
(r2t(k) + 2naa

2)2

λ2t(k)
− [b2t(k) + 2nav] (3.9)

and n0 turns out to be an integer.
Consider the design points, [1− (v, b, r, k1, k2, b1, b2, λ)]2t(k) ∪ n0 will give a

three level v dimensional modified SOSRD in N = (r2t(k))2

λ2t(k) design points when
r = 5λ, if,

n0 =
(r2t(k))2

λ2t(k)
− b2t(k) (3.10)

and n0 turns out to be an integer.
Let (a, a, . . . , a)2t(v) denote the design points generated from (a, a, . . . , a)

point set. Repeat this set of additional design points say na times when r > 5λ.
Consider the design points, [1−(v, b, r, k1, k2, b1, b2, λ)]2t(k)∪na(a, a, . . . , a)2t(v)

∪n0 will give a v dimensional modified SOSRD in

N =
(r2t(k) + na2

t(v)a2)2

λ2t(k) + na2t(v)a4

design points if,

a4 =
(r − 5λ)2t(k)−t(v)−2

na
, (3.11)

n0 =
(r2t(k) + na2

t(v)a2)2

λ2t(k) + na2t(v)a4
− (b2t(k) + na2

t(v)) (3.12)
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and n0 turns out to be an integer.

3.4 Modified SOSRD using PBD

Pairwise balanced designs. The arrangement of v treatments in b blocks
will be called a PBD of index λ and type (v, k1, k2, . . . , km) if each block con-
tains k1, k2, . . . , km treatments (ki ≤ v, ki 6= kj) and every pair of distinct treat-
ments occurs in exactly λ blocks of the design. If bi is the number of blocks of
size ki (i = 1, 2, . . . ,m) then b =

∑m
i=1 bi and λv(v − 1) =

∑m
i=1 biki(ki − 1).

Let (v, b, r, k1, k2, . . . kp, λ), be an equi-replicated PBD and k = max(k1, k2,
. . . , km). 2t(k) denotes a resolution V fractional factorial of 2k with 1 or −1
levels, such that no interaction with less than five factors is confounded. [1−
(v, b, r, k1, k1, . . . kp, λ)] denote the design points generated from the transpose
of incidence matrix of PBD, [1−(v, b, r, k1, k2, . . . kp, λ)]2t(k) are the b2t(k) design
points generated from PBD by multiplication.

Let (a, 0, 0, . . . , 0)21 denote the design points generated from (a, 0, 0, . . . , 0)
point set. Repeat this set of additional design points say na times when r < 5λ.
Consider the design points, [1− (v, b, r, k1, k2, . . . , kp, λ)]2t(k)∪na(a, 0, . . . , 0)21

∪(n0) will give a v dimensional modified SOSRD in

N =
(r2t(k) + 2naa

2)2

λ2t(k)

a design points if,

a4 =
(5λ− r)2t(k)−1

na
, (3.13)

n0 =
(r2t(k) + 2naa

2)2

λ2t(k)
− (b2t(k) + 2nav) (3.14)

and n0 turns out to be an integer.
Consider the design points, [1− (v, b, r, k1, k2, . . . , kp, λ)]2t(k)∪n0 will give a

three level v dimensional modified SOSRD in N = (r2t(k))2

λ2t(k) design points when
r = 5λ, if

n0 =
(r2t(k))2

λ2t(k)
− b2t(k) (3.15)

and n0 turns out to be an integer.
Let (a, a, . . . , a)2t(v) denote the design points generated from (a, a, . . . , a)

point set. Repeat this set of additional design points say na times when r > 5λ.
Consider the design points, [1−(v, b, r, k1, k2, . . . , kp, λ)]2t(k)∪na(a, a, . . . , a)2t(v)

∪n0 will give a v dimensional modified SOSRD in

N =
(r2t(k) + na2

t(v)a2)2

λ2t(k) + na2t(v)a4
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design points if,

a4 =
(r − 5λ)2t(k)−t(v)−2

na
, (3.16)

n0 =
(r2t(k) + na2

t(v)a2)2

λ2t(k) + na2t(v)a4
− (b2t(k) + na2

t(v)) (3.17)

and n0 turns out to be an integer.

4 Concluding Remarks

Different methods of constructions of modified SOSRD were examined in de-
tail. These methods are useful in deciding a proper design for second-order re-
sponse surface polynomial models for the construction of modified SOSRD with
desired properties or minimum number of design points. It is often necessary
to choose a response surface design in which the number of levels of factors are
unequal and in such a case modified second-order asymmetric slope-rotatable
designs are useful.

Another area in which one may be interested is to study modified group-
divisible second-order slope-rotatable designs. Not much work is available with
regard to construction of designs in this area. It may be interesting to study
some new methods of constructions of modified group-divisible second-order
slope-rotatable designs using central composite designs, balanced incomplete
block designs, pairwise balanced designs, etc.,

There is scope for further research to evolve new methods of constructions
of modified SOSRD which will lead to designs with lesser number of design
points for different v compared as per the existing methods of construction
vide Table 2. A comparison of different methods of constructions of modified
SOSRD for 2 ≤ v ≤ 16 is given in Table 1.

A list of modified SOSRD with minimum number of design points con-
structed using different methods is given in Table 2.
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Table 1: Comparison of different methods of construction of modified SOSRD
No. of Modified Modified Modified SOSRD Modified SOSRD
factors SRCCD SOSRD using using PBD using SUBA with two

(2005a) BIBD (2005a) unequal block sizes
(2006a) (2008b)

(v) N N N N
2 36 – – –
3 32 – – –
4 64 64 – –

(4,6,3,2,1) – –
5 64 150 – –

(5,10,6,3,3) – –
6 72 100 128 128

(6,15,5,2,1) (7,7,3,3,1) (6,7,3,2,3,3,4,1)
7 144 128 – –
8 144 432 392 162

(8,14,7,4,3) (8,15,6,4,3,2,2) (8,12,4,2,3,4,8,1)
9 200 162 392 200

(9,12,4,3,1) (9,15,6,4,3,2) (9,18,5,2,3,9,9,1)
10 200 361 – –

(10,18,9,5,4)
11 200 600 – –

(11,55,15,3,3)
12 400 768 676 –

(12,33,11,4,3) (12,16,6,6,5,4,3,2)
13 400 400 676 –

(13,13,4,4,1) (13,16,6,6,5,4,3,2)
14 400 – 676 900

(14,16,6,6,5,4,2) (14,35,7,2,3,7,28,1)
15 400 1200 676 –

(15,15,7,7,3) (15,16,6,6,5,2)
16 400 400 – –

(16,20,5,4,1)
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Table 2: Modified SOSRD with minimum number of design points for 2 ≤ v ≤
16
No. of 1st best Modified SOSRD 2nd best Modified SOSRD
factors
2 Modified SRCCD, N = 36 –
3 Modified SRCCD, N = 32 –
4 Modified SRCCD, N = 64 –

Modified SOSRD-BIBD (4,6,3,2,1),
N = 64

5 Modified SRCCD, N = 64 Modified SOSRD-BIBD
(5,10,6,3,3), N = 150

6 Modified SRCCD, N = 72 Modified SOSRD-BIBD
(6,15,5,2,1), N = 100

7 Modified SOSRD-BIBD (7,7,3,3,1), Modified SRCCD, N = 144
N = 128

8 Modified SRCCD, N = 144 Modified SOSRD-SUBA
(8,12,4,2,3,4,8,1), N = 162

9 Modified SOSRD-BIBD Modified SRCCD, N = 200
(9,12,4,3,1), N = 162 Modified SOSRD-SUBA

(9,18,5,2,3,9,9,1), N = 200
10 Modified SRCCD, N = 200 Modified SOSRD-BIBD

(10,18,9,5,4), N = 361
11 Modified SRCCD, N = 200 Modified SOSRD-BIBD

(11,55,15,3,3), N = 600
12 Modified SRCCD, N = 400 Modified SOSRD-PBD

(12,16,6,6,5,4,3,2), N = 676
13 Modified SRCCD, N = 400 Modified SOSRD-PBD

Modified SOSRD-BIBD (13,16,6,6,5,4,3,2), N = 676
(13,13,4,4,1), N = 400

14 Modified SRCCD, N = 400 Modified SOSRD-PBD
(14,16,6,6,5,4,2), N = 676

15 Modified SRCCD, N = 400 Modified SOSRD-PBD
(15,16,6,6,5,2), N = 676

16 Modified SRCCD, N = 400 —
Modified SOSRD-BIBD
(16,20,5,4,1), N = 400
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