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Abstract

Kotz and Johnson [10], Deleryd [1] indicated that there was a gap between
theory and practice of process capability studies. Then how to reduce the gap
and the variation between theory and practice of process capability studies has
been become a serious problem.

Most of results obtained so far regarding the distributional properties of
estimated capability indices are based on the assumption of a simple sample of
observations from the normally distributed process, which is in-control. To use
estimators based on several small subsamples and then interpret the results
as if they were based on a single sample may result in incorrect conclusions.
For the sake of use past in-control data from subsamples to make decision
regarding process capability, the distribution of the estimated capability index
with subgrouping should be considered.

And then, we know that all the information gathered from the product
inspection process in the manufacturing industries can be used as the rational
subgroup data in real. Therefore, we consider estimator that naturally occur
when using an X̄-chart together with a R-chart in quality control. In addition,
we make use of the Patnaik’s [13] approximation to the central Chi-squared
distribution, to construct a procedure approximate tolerance limits for the
sampling distribution of the Cp to assess the performance and enhance practical
value for the capability chart based on range.

Keywords. Process Capability Chart; Approximate Tolerance Limits; Range;
Relative Efficiency.

1 Introduction

Process capability indices are widely used to measure whether the product
quality meets to customer’s requirements. They can help companies to pro-
mote marketing sales, retain customers and reduce the process variability. The
setting and communication becomes much simpler and easier by using process
capability indices to express process capability between manufacturers and
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customers. The use of these indices provides a unitless language for evaluat-
ing not only the actual performance of production processes, but the potential
performance as well. The indices are intended to provide a concise summary of
importance that is readily usable. Engineers, manufacturers, and suppliers can
communicate with this unitless language in an effective manner to maintain
high process capabilities and enable cost savings.

Since capability analysis of a process and effectiveness of control charts are
directly related, therefore, Kuo, et al. [5, 6, 7]provided a confidence bound and
a test of hypothesis for Cpm and Cpp based on subsamples. Not only we make
use of a better estimator of σ for moderate large sample size, which was that
introduction by Kirmani, et al. [9] and Derman and Ross [2], respectively,
but also consider with variable sample size, to construct a procedure lower
confidence bounds in some detail in connection with minimum values for Cp.

Montgomery [12] and Juran and Gryna [8] pointed out that control charts,
in addition to monitoring a process, provide estimates of the process param-
eters that are useful in capability studies. No matter how, not only we make
use of a link between capability indices and tolerance limits, and we propose to
utilize the information gathered by control charts to estimate tolerance limits
of a process on a continuous basis, and also construct an approximate tolerance
charts for Cp based on range. The procedures have been included.

Montgomery [12] pointed out that control chart is an on-line process con-
trol technique widely used for this purpose. Control chart is an important
part of the magnificent seven major tool of SPC (Statistical Process Control).
Moreover, control charts are of great use in the analysis and control of man-
ufacturing processes, so as to produce quality that is satisfactory adequate,
dependable and economic. Nevertheless, the general characteristics of control
charts, and their usefulness, and emphasized two general purposes:

(a) Analysis of past data for control. (b) Process control versus given
standards.

Now that we know all existing process capability indices have some weak-
nesses. Deleryd [1, Figure 1] indicated that Cp react to changes in process
dispersion but not to change of process location. Cpk reacts to changes both in
process dispersion and location. Cpm and Cpmk react more strongly to changes
both in dispersion and location than Cpk. And Cpmk is more sensitive than
Cpm to deviations from the target value T . The index Cpp is useful to evalu-
ate process capability for a single product in common situation, it cannot be
applied to evaluate the multi-process capability. The index Cpp is a simple
transformation from the index Cpm, and provided individual information con-
cerning the process accuracy and process precision. Capability indices are key
measures in the context of never-ending improvement in quality. The process
measures are estimated based on a single random sample of observations from
the normally distributed and in statistical control.

Extensive studies have been conducted to determine the effects of non-
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normality on the carious capability indices since Gunter [3] bemoaned the many
drawbacks of Cpk in particular. Several methods for handling non-normal data
have been suggested. Standard measurement-system analysis criteria assume
the gauge measures a single variable. However, in some kind of manufacturing,
measurement systems take data for many quality characteristics, to support
using these data as a multivariate response. Majeske [11] develops multivariate
extensions of gauge-approval criteria precision to tolerance ratio, percent R&R,
and signal-to-noise ratio.

A successful implementation of process capability studies require that proper
resources are allocated, which is a managerial responsibility. The proper ed-
ucation and training can be provided. So we can give proper education and
training every co-worker knows the method. Then the conservative personal
attitudes may be changed and the prerequisites for handling the practical prob-
lems are much more promising.

To bridge some of the gap between theory and practice, loss function can
be used. In general, Spring, et al. [14] and Vännman [15] think that there is a
need for simple graphical tools to bridge some of the gap between practice and
theory in capability studies. And the visual impact of a plot is more effective
than numbers, for example, estimates or confidence limits.

The capability of a process and effectiveness of control charts are directly
related. The gap between theoreticians and practitioners is, we believe and
hope, mainly through software, but there still remain numerous instances of
lack of understanding of the purpose and usage of Process capability indices
(PCIs) and process performance.

In this paper, we use the Cp index, but also consider various sample size to
construct the approximate tolerance limits for Cp, based on range. To assess
the capability of a process, it is proposed to consider estimated tolerance lim-
its in capability analysis, along with control charts for monitoring the process
mean and process standard deviation, respectively, and come from a normal
distribution and are independent. The capability chart used in conjunction
with the traditional Shewhart variables charts will provide evidence of im-
provement. It may also assist in ending the unfortunate practice of including
specification limits on the X̄ chart and R-chart will incorporate the limits into
the calculation of process capability.

2 Approximate tolerance limits for Ĉp based

on range

In any production or manufacturing process, regardless how well it was de-
signed or carefully maintained, a certain amount of inherent or natural vari-
ability will always exists. In the framework of statistical quality control, this
natural variability is often called a ‘stable system of chance causes’. A process
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Table 1: The R.E. of the range method to S2

n 2 3 4 5 6 7 10
R.E. 1.000 0.992 0.975 0.955 0.930 0.910 0.850

that is operating with only chance causes of variation is said to be in statisti-
cal control. Other kinds of variability (assignable causes) may occasionally be
present in the output of a process is said to be out of control.

A quality characteristic that is measured on a numerical scale is called a
variable. Usually it needs to be monitored both the mean value of the quality
characteristic and its variability. The most commonly used types of control
charts for variable are X̄ charts related to the process level, and the standard
deviation S chart and the range R chart related to the process variability.

Let Xi1, Xi2, . . . , Xin, i = 1, . . . , m, be m preliminary independent random
samples of size n from normal distribution with mean µ and standard deviation
σ. The ith subsample mean is

X̄i =
(Xi1 + Xi2 + · · · + Xin)

n
(2.1)

In most cases, both µ and σ are unknown. Therefore, they need to be esti-
mated from the preliminary sample or subsamples from process which is in
statistical control. These estimates are usually based on at least 20 to 25 sub-
samples. Suppose that m subsamples are available, each subsample contains
n observations on the quality characteristic. Then, a reasonable estimator of
µ, the process mean, is the grand average, say

¯̄X =
(X̄1 + X̄2 + · · · + X̄m)

m
(2.2)

To construct the confidence bounds for some process capability indices, we
need an estimate of the standard deviation σ. We may estimate σ either by
the sample standard deviation or the range of m subsamples means. Mont-
gomery [12] point out, the relative efficiency (R.E.) of the range method to the
sample variance S2 for various sample size based on a single sample is shown
in Table 1.

However, for the small sample size, n = 4, 5, or 6, the range chart method
is often employed and it is entirely satisfactory. But, for moderate value of
n, say, n ≥ 10, the range method loses its efficiency rapidly since it ignores
all the information in the sample between Xmax = max{X1, X2, . . . , Xn} and
Xmin = min{X1, X2, . . . , Xn}. In this case, the S chart is preferred to the R
chart.

As stated before, in this paper, a common practice in process control is to
estimate the process capability indices by analyzing the past ‘in control’ data.
Suppose that m subsamples, each of size n, are available, and then we can
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estimate µ by ¯̄X, given in (2.2). Since ¯̄X is equal to the average of all of the
mn data values, it is the ‘natural’ estimator of µ.

Let X1, X2, . . . , Xn be a random sample of size n drawn from a normal
population with mean µ and standard deviation σ. The range of this single
sample is defined by

R = Xmax − Xmin, (2.3)

where Xmax = max{X1, X2, . . . , Xn} and Xmin = min{X1, X2, . . . , Xn}.
Suppose the total samples are grouped into m subsamples such that each

subsample contains n observations. The mean of the m ranges will be denoted
by R̄m,n and the range of a single sample of size n is denoted by R1,n.

When E(R) = σd2 and Var(R) = σ2d2

3
, the mean and variance of R̄m,n/σ

are given by
E(R̄m,n/σ) = E(R1,n/σ) = d2, (2.4)

and
Var (R̄m,n/σ) = Var(R1,n/σ)/m = d2

3
/m, respectively. (2.5)

Then R̄m,n/d2 is an unbiased estimator of σ, where d2 and d3 are constants
(see Hartley and Pearson [4]).

According to Patnaik [13], it has been shown that R̄m,n/σ is approximately

distributed as
c
√

χ2

√
ν

. That is,

(
R̄m,n

σ
)2 ≡ c2

χ2

ν

ν
, (2.6)

and (
R̄m,n

σ
)2 × ν

c2
≡ χ2

ν , (2.7)

where χ2

ν denotes a chi-square distribution with ν degrees of freedom, and c
and ν are constants which are functions of the first two moments of the range
variable, given by

ν =
1

(−2 + 2
√

1 + 2(d3/d2)2/m)
, (2.8)

and c = d2 ×
√

ν/2 × Γ(ν/2)/Γ((ν + 1)/2) ≈ d2(1 + 1/(4ν)). (2.9)

Using these relations, the values of c and ν can be easily obtained for any n
and m.

Assume that the process measurement follows N(µ, σ2), the normal dis-
tribution, the index and reasonable estimator of Cp are given as following,
respectively,

Cp = (USL − LSL)/(6σ), (2.10)

and Ĉp = (USL − LSL)/(6σ̂), (2.11)
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where [LSL, USL] is the specification interval, µ is the process mean, σ is
the process standard deviation (overall process variability), under stationary
controlled conditions.

From (2.10) and (2.11), we obtain

(

Cp

Ĉp

)2

=

(

σ̂

σ

)2

, (2.12)

where σ̂ = R′/d2 is an unbiased estimator of σ, and R′ indicates either R̄m,n

or R1,n, based on rang. Thus,

χ2

R = C2

p/Ĉ2

p × d2

2
ν/c2 = (R′/σ)2 × ν/c2 ≡ χ2

v. (2.13)

Apply a simple approximation procedure based on range we can obtain the
tolerance limits of the estimator of Cp.

The 100(1−α)% approximate tolerance limits for Ĉp, together with X̄ −R
charts

1 − α = P (χ2

1−α/2
≤ χ2

R ≤ χ2

α/2
)

= P (J1Cp ≤ Ĉp ≤ J2Cp),
(2.14)

where

J1 =
d2

c
×
√

ν

χ2

α/2

and J2 =
d2

c
×
√

ν

χ2

1−α/2

, (2.15)

and χ2

α/2
(ν) is the upper α/2 quantile of the chi-squared distribution with ν

degrees of freedom. So, the 100(1 − α)% approximate tolerance limits for Ĉp

based on range, is given by
(J1Cp, J2Cp). (2.16)

When using X̄ −R charts, the mean line, denoted C̄p, is given by (2.17) form,
as follows

C̄p =
USL − LSL

6( R̄
d2

)
, (2.17)

resulting in upper and lower limits of the form U1 = J2C̄p and L1 = J1C̄p.

Therefore, the 100(1 − α)% approximate upper and lower limits for Ĉp in
conjunction with X̄ − R charts based on Range are of the form.

Approximate upper tolerance limits: U1 = J2C̄p

center line: C̄p

Approximate lower tolerance limits:

L1 = J1C̄p. (2.18)
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Table 2: The step of the approximate tolerance limits for Cp capability Chart
Step Cp

1. Determine the value of ith subsample mean X̄i and range Ri.

2. a. Compute the grand average, ¯̄X.
b. Calculate the mean of the m ranges, R̄.

3. a. Compute σ̂ = R̄m,n/d2.
b. Calculate the value ν.

c. Calculate a series of the estimates Ĉp.
4. a. Compute center line C̄p.

b. Calculate the approximate upper tolerance limits U1.
c. Calculate the approximate lower tolerance limits L1.

3 The procedure

As stated before, to check it the process meets the capability requirement, we
first determine the ith subsample mean is X̄i and the ith subsample range is
Ri. Second, we calculate the grand average, say ¯̄X, and the mean of the m
ranges, say R̄. Third, calculate an unbiased estimator of σ is σ̂ = R′/d2 and a
chi-square distribution with ν degrees of freedom, and a series of the estimates
of Cp, Ĉp. Finally, we compute center line C̄p, and the approximate upper and
lower tolerance limits U1 and L1, respectively.

Otherwise, we do not have sufficient information to conclude that the pro-
cess meets the present capability requirement. In sum, we summarize these
steps shown in Table 2.

4 Numerical example

We use the data given in Table 3 to demonstrate this procedure. This example
is about a manufacturing process with m = 20 subsamples, each subsample
consists of n = 5 samples, have been taken from the process when the process
was in control. A total of 100 observations were collected and are displayed
in Table 3. The upper and lower specification limits are USL= 1.2 and LSL
= 0.8, respectively.

Since each subgroup in the process provides a measure of location, X̄i, and
a measure of variability either Ri, an estimator of Ĉp can be determined for
each subsample using either equation (2.11). The result is a series of estimates
for Cp over the life the process.

Control charts can indicate whether or not statistical control is being main-
tained and provide us with other signals from the data. If the process is in a
state of statistical control, then the value of Cp at the subgroup level provides
information regarding process capability. If the process is out-of-control, then
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Table 3: Collected 100 observations sample data
n\m 1 2 3 4 5 6 7 8 9 10

1 0.96 1.25 1 1 1.08 1.11 1.08 1.11 1.02 1.1
2 1.1 1.1 1.2 1.15 1.15 1.02 1.24 1.02 1.02 1.2
3 1.16 1.2 1.11 1.14 1.25 1.1 1.1 1.1 1.23 1.21.
4 1.18 1.04 1.12 1.12 1.12 1.23 1.06 1.23 1.12 1
5 1.23 1.08 1.1 1.2 1.11 1.1 1.12 1.1 1.06 1.2

n\m 11 12 13 14 15 16 17 18 19 20
1 1.2 1.1 1.12 1.15 1.2 1.3 1.1 1.23 1.1 1.23
2 1.29 1.08 1.04 1.12 1.07 1.2 1.19 1.15 1.02 1.15
3 1.12 1.02 1.23 1.05 1.02 1.12 1.03 1.07 1.14 1.04
4 1.1 1.05 1.12 1.1 1.13 1.15 1.02 1.02 1.07 1.14
5 1.14 1.2 1.1 1.26 1.18 1.12 1.09 1.1 1 1.14

no estimates of Cp are possible. After a process has been brought into a state
of statistical control, a process capability study can be initiated to determine
the capability of the process in regard to meeting the specifications.

It would be illogical to undertake such a study if the process is not in
control, since the objective should be study the capability of the process after
all problematic causes has been eliminated, if possible. Once control has been
estimated, capability can be assessed in a variety of ways, and then estimates
of the process capability can be calculated from the subgroup information.

Take the first steps, it is possible to attain estimates of Cp as subgroup
information is gathered. That is similar to general control chart procedures
the subgroup information should be monitored and considered as all assignable
cause can be both detected and removed, and this cycle should be continued
until no further action can be taken. Once in-control, a typical control charts
contains a center line and two other horizontal lines, called the upper control
limit (UCL) and the lower control limit (LCL), are also shown on the chart,
the later permitting limits for the capability chart.

As expected, the estimates of Cp vary from subgroup to subgroup. To
analysis these fluctuations, limits and a mean lines are required, similar to the
Shewhart control charts, the upper and lower limits for Ĉp will represent the
interval expected to contained 99.73% of the estimates if the process has not
been changes or altered.

Looking first at the R chart in Figure 1, the process variability does not
appear out-off control signals, which also seems to be the case with the X̄
chart. The usual control limits and centre lines for the X̄ and R charts have
been calculated from the subgroup information and included on the control
chart. Since the process appears to be in-control, Ĉp has been calculated using
the form (2.11) for each subgroup and the values plotted in a run chart to
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Figure 1: X̄-R charts and a runs chart of Ĉp.
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Table 4: Values of the vary from subgroup to subgroup for the Ĉp

m/1 2 3 4 5 6 7 8 9 10
0.5743 0.7384 0.7753 0.7753 0.9122 0.7384 0.8615 0.7384 0.7384 0.7753

11 12 13 14 15 16 17 18 19 20
0.8161 0.8615 0.8161 0.7384 0.8615 0.8615 0.9122 0.7384 1.1076 0.8161

show in Table 1.
To analysis these fluctuations, limits and a means line analogous to the

Shewhart limits and center line are required. Similar to Shewhart control
charts, the upper and lower limits for Cp will represent the interval expected
to contain 99.73% of the estimates if the process has not been altered.

From the process data, we obtain that sample mean ¯̄x = 1.1206, R̄ =
0.1950, A2 = 0.577, d2 = 2.326, d3 = 0.8641, D3 = 0, D4 = 2.114, and
ν = 72.7080. The result is a series of estimates of Cp over the life of the
process, shows in Table 4.

The upper and lower limits for Ĉp in the conjunction with X̄ and R
charts are of the form U1 and L1, respectively, and center line as follows is
Approximate upper tolerance limits: U1 = J2C̄p = 1.05205,

center line: C̄p = 0.79521,

Approximate lower tolerance limits: L1 = J1C̄p = 0.63465.
The limits and mean line have been showed in Figure 2.

Apparently, the process capability estimates vary from subgroup to sub-
group. With the exception of subgroup 19 the fluctuations in Ĉp appear to
be due to random causes. In period 19 the process capability appears to have
increased significantly and warrants investigation. Practioners would likely at-
tempt to determine what caused the capability to rise significantly and recreate
that situation in the future. If the estimated process capability had dropped
below L1 this would signals a charge in the process (for example, subgroup
1), and the process capability was not at the level required by the customer,
changes in the process would be required.

Owing, in the never-ending improvement system, the process capability
should be under constant influence to increase. The capability chart used in
conjunction with the traditional Shewhart variables charts will provide evi-
dence of improvement.

5 Conclusion

Control chart is an important part of the magnificent seven major tool of SPC.
Thereby, control charts are of great use in the analysis and control of man-
ufacturing processes, so as to produce quality that is satisfactory adequate,
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Figure 2: X̄-R charts and Ĉp capability chart with upper and lower limits,
and center line.
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dependable and economic. And, the effect of any changes to the process will
also show up on the chart, thereby providing feedbacks to the practioner re-
garding the effect changes to the process have on process capability.

The proposed chart is easily appended to X̄-R charts and makes easy judg-
ments regarding the ability of a process to meet requirements, also providing
evidence of process performance. The capability chart represents a modifica-
tion of the control charts that combines customer requirements and process
performance in a certain degree reflecting the needs of the customer as well as
providing information to the manager of the process.
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