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Abstract. Currently there is lot of interest in the area of stress-strength
models, especially in the estimation of R = P(X > Y), when X and YV
are independent random variables belonging to the same univariate family of
distributions. P(X > Y) is of greater significance than just in reliability since
it provides a general measure of the difference between two populations and
has applications in many areas. For instance, if Y is the response for a control
group, and X refers to a treatment group, R is a measure of the effect of the
treatment. In this paper, we introduce a new family of distribution referred to
as the double Lomax distribution, which is the ratio of two independent and
identically distributed classical Laplace distributions and estimate P(X > Y).
Also we derive the pdf and the expression for the reliability R for the double
Lomax distribution truncated below zero. The maximum likelihood estimate
of the reliability parameter is calculated using an algorithm in R package.
Finally, Robert’s data dealing with Otis IQ) scores is analyzed to illustrate the
procedure.
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1 Introduction

In the context of reliability, the stress-strength model describes the life of a
component which has a random strength X and is subjected to a random
stress Y. The component fails at the instant that the stress applied to it ex-
ceeds the strength, and the component will function satisfactorily whenever
X > Y. Thus, R = P(X > Y) is a measure of component reliability. The
parameter R is referred to as the reliability parameter. This type of functional
can be of practical importance in many applications. For instance, if X is the
response for a control group, and Y refers to a treatment group, P(X < Y)
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is a measure of the effect of the treatment. R = P(X > Y) can also be
useful when estimating heritability of a genetic trait. For more applications
of R, see Halperin et al. (1987), Simonoff et al. (1986), Reiser and Farragi
(1994) and Bamber (1975). In fact, Bamber gives a geometrical interpretation
of A(X,Y) = P(X <Y)+ 3P(X =Y) and demonstrates that A(X,Y) is a
useful measure of the size of the difference between two populations.

Weerahandi and Johnson (1992) proposed inferential procedures for P(X >
Y') assuming that X and Y are independent normal random variables. Gupta
and Brown (2001) illustrated the application of skew normal distribution to
stress-strength model. Nadarajah (2004) studied the reliability for Laplace
distribution and its generalizations. The present work introduce the double
Lomax distribution and present its application to the stress-strength model.
The double Lomax distribution is the ratio of independent and identically
classical Laplace distributions. For given random variables X and Y, the dis-
tribution of the ratio X/Y is of interest in biological and physical sciences,
econometrics, and ranking and selection. Examples include Mendelian inher-
itance ratios in genetics, mass to energy ratios in nuclear physics, target to
control precipitation in meteorology, inventory ratios in economics, and the
stress-strength model in the context of reliability.

The functional R = P(X > Y)or A = P(X >Y)—-P(X <Y)is of
practical importance in many situations, including clinical trials, genetics, and
reliability. In this paper we are interested in applying R = P(X > Y) as a
measure of the difference between two populations, in particular where X and
Y refer to Otis IQ scores of 87 white males and 52 non-white males hired by a
large insurance company in 1971(Roberts (1988)). This article is organized as
follows. In section 2, the univariate double Lomax distribution and its density
truncated below zero are derived. In section 3 we derived the expression for the
P(X >Y) for double Lomax and double Lomax distribution truncated below
at zero. The estimation of the P(X > Y')) using the Maximum Likelihood
Estimators of the parameters obtained from the simulated data is presented in
section 4. In section 5, Robert’s data dealing with Otis IQ scores are analyzed
to illustrate the procedure. Finally, we summarize in section 6.

2 Double Lomax distribution

The Laplace model is an alternative to the normal model in situations where
the normality assumption do not hold. In a similar way the the ratio of in-
dependent and identically distributed Laplace distribution is an alternative to
the Cauchy distribution. The double Lomax distribution studied by Bindu et
al. (2010), is shown to be a suitable model for a microarray gene expression
data.
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Also the double Lomax distribution can be obtained by compounding classi-
cal Laplace distribution with exponential density. The compound distribution
is of interest for the study of production/inventory problems, since it provides
a flexible description of the stochastic properties of the system. These distri-
butions play a central role in insurance and other areas of applied probability
modelling such as queuing theory, reliability etc.

Definition 2.1 Let X; and X5 be two independent and identically distributed
(i.i.d.) standard classical Laplace random variables. Then the corresponding
probability distribution of Y = X1/X5 is given by
1
fly) = AN 00 <y < 00. (2.1)

The Laplace distribution can also be expressed as the difference of two i.i.d
exponentials and hence,
X; L LW;, for i = 1,2 where, W; ~ Exp(l), for ¢ = 1, 2 and I/s are
independent of W; and takes values +1 with equal probabilities.
Then the cdf can be given by

1
m, fOI'ySO

Fly) = (2.2)

(1—2(1—%), fOI'y>0

Remark 2.1 Let X; and X5 be two independent and identically distributed
(i.i.d.) standard classical Laplace random variables. Then the corresponding
probability distribution of Z = |X1/Xs| is given by

1
=—— 0 : 2.3
f(2) TS e (2.3)
which is the pdf of the Lomax distribution. Hence the random variable Y
having pdf given by (2.1) may be referred to as the double Lomax distribution
(DLD).

Then the double Lomax distribution, which is the extension of the Lomax
distribution over the real line is defined as follows.

Definition 2.2 A random variable Y is said to have a double Lomax distribu-
tion with parameters p and o, DLD(u, o) if its probability distribution function
18

1
PFNC=DIE y<p

Fy(y) = ) (2.4)
o Y

and the probability density function is

1
fY(y)_ 20’[14—’%—””]27

—00 <y < 00 (2.5)
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If Y ~ DLD(0,1) then it is referred as the standard double Lomaz distri-
bution. The corresponding probability distribution and density functions are
given by (2.1) and (2.2), respectively.

If Y has the standard double Lomax distribution and ¢ = F(y), then
y = F~(¢q) and quantiles &, can be written explicitly as follow

(1—%), for 0 <g<32
§ = 1 1 (2.6)
(m — 1), for 5 S q < 1

Thus if Y has the double Lomax distribution with cdf given by (2.4) then
quantiles &, is obtained as §, = p + 0&,. In particular, the first and the third
quartiles are given by

O =8§u=p—0, @Q3=8&u=p+to

Evidently, the second quartile Qo-median is . The shape of the density (2.5)
is given in Figure 1 along with the normal and Laplace density functions.

Double Lomax, normal and Laplace density

«©

< | — DLD(M=0,0=1)

-—=- N(p=0,0=1)

..... Laplace(n =0, o = 1)
DLD(p =1, 0=2)

3 ; —— N@u=1,0=2)
Laplace(pn=1, o =2)
= _|
o
=
w o 1
S (=1
=]
o~
(=2

01

o | oIS
o

T T T T T T T T T T T T T T T T T
-8 -7 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 7 8

Figure 1: Double Lomax density functions
for various values of parameters

From figure 1, we can see that for double Lomax density (DLD) more area is
concentrated towards the center and has heavier tails than normal and Laplace
distribution.
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2.1 Double Lomax distribution truncated below at zero

If a random variable Y has a standard double Lomax distribution , DLD(0, 1)
then the double Lomax density truncated below zero is given by

fly) = K o), v>0 (2.7)

(1+y

where K is the normalizing constant. Then the double Lomax distribution,
DLD(0,0) truncated below at zero is given by

1
fly)=———, y>0,0>0. 2.8
() ST ()] (2.8)
The cdf is given by
1
F(y):1_[1+(3)}7 y >0, 0>0. (2.9)

3 P(X >Y) for the double Lomax distribution

Let X and Y are two continuous and independent random variables. Let f5 de-
note the probability density function (pdf) of Y and F; denote the cumulative
distribution function (cdf) X. Then P(X >Y) can be given as,

oo

P(X>Y) :/ Fy(2) f1(z)dz. (3.1)
— 00
To evaluate P(X > Y) we can use the generalized hypergeometric func-
tions. The generalized hypergeometric function is given by a hypergeometric
series, in which the ratio of successive terms can be written

1 (k+a)(k+a2) - (k+ap)

Ck, (k+b1)(k+0bg)---(k+0by)(k+1)

Hence the generalized hypergeometric function is written as,

= (ar)p(az)g -+ (an), 2
F v @y by by b)) = — 2
P Q(alaa/Qa 7ap7 1, Y2, ) Q’x) ; (bl)k(b2>k(bn>k k' (3 )

where (a;), and (b;);, are the Pochammer symbols given by

(a)p=ala+1)---(a+k—1), (a)p=1, a#0

also (a) = F(Fa(:)k), whenever the gamma function exists, that is R(a) > 0.

For p =2 and d = 1 we get the Gauss hypergeometric function.
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2F1(a1,a2;b;x) :;%% (3-3)

Now we evaluate the P(X > Y) for two independent double Lomax distri-
butions. Let X and Y are continuous and independent variables having double
Lomax distribution with parameters 6; and o;, 1 = 1, 2 respectively.

From equation (3.1) we get the reliability R for the type II compound Laplace
distribution as follows

1
40’1

where the integrals Iy, Iy and I3 given below and Fy is obtained by sub-
stituting o = g9, 0 = 0, in (2.4)

min(601,02)
I = / 1+ (61— 2)/on] 2 [1+ (0 — 2) /o] L d=

—00

max(61,02) . .
12:/ L4 |2 — 1] on] 21+ |2 — Oa o] d2
min(601,02)
I = / L4 (2= 00)/on] 2 [1+ (= — ) Jora] - diz
max(01,02)

The integrals I; and I3 can be expressed in terms of the Gauss hyper
geometric function. The integral I; cannot be simplified further unless 6; = 65,
in this case we get R = 1/2. For instance, if 0; < 65,

1 6, — 0
L=-2,r (2, ;31— 2 - M) (3.5)
8oy 01 01
1 1 0, — 6
Iy = = LF) (1, 1:3.1- 2 M) (3.6)
80.1 (1 + 920—191> (op)] 02

3.1 P(X >Y) for the double Lomax distribution trun-
cated below at zero

Let X and Y are two independent double Lomax random variables truncated
below zero. Let fy denote the probability density function (pdf) of Y and F}
denote the cumulative distribution function (cdf) X. Then P(X > Y') can be
given as,

oo

PX>Y)=1— Uil [z 2o (3.7)
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4 Maximum Likelihood Estimate of P(X >Y)

The MLE of the P(X > Y') can be obtained by replacing the parameters 6,
0y, 01 and oy in (3.4) by their MLE’s. Then the MLE of R is given by

AN ~ 1 - o~ ~
R=1-Fy(0h)+ — (Il+1'2—[3). (4.1)
40’1
where
R mzn(é\l,a’;) R _9 R .
I = / [1 + (0, — z)/é\l} [1 + (B — 2)/@} s
R max(OAl,GAQ) S 9 o o
12:/ [irle-ana] 14l -ala] d
min(91,92)
~ 0 ~ . —2) Y R 1
I3 :/ - [1+(z—«91)/01] [1+(2_92)/02] dz
max(01,02)

Using Maple program we can evaluate the integrals for the Maximum Like-
lihood Estimates of the parameters.

Now we can find the Maximum Likelihood estimates of the parameters from
the simulated sample of 100 observations form the double Lomax distribution.
Let X = (Xy,---,X,) be independent and identically distributed samples
from a double Lomax distribution. The log-likelihood function takes the form

logL(0y,01; X) = —nlog2 — nlogo, — 2 Z log[1 + |(x; — 601)/01]]

=1

Let Y = (Y3,---,Y,) be independent and identically distributed samples from
a double Lomax distribution. The log-likelihood function takes the form

logL(0y,09;Y) = —nlog2 — nlogoy — 2 Z log [1+ |(y; — 02) /0]

i=1

The maximum likelihood estimates of the parameters can be obtained by us-
ing the approach of the maximum likelihood estimation of Laplace distribution
(see, Kotz et al. (2001)). Maximum likelihood estimators (MLE) of the param-
eters (01,01) and (04, 09) are obtained by solving two sets of score equations.
Numerical methods are needed to solve these score equations. In our illus-
tration, the maximisation of the likelihood is implemented using the optim
function of the R statistical software, applying the BFGS algorithm (See R
Development Core Team, 2006). Estimates of the standard errors were ob-
tained by inverting the numerically differentiated information matrix at the
maximum likelihood point.
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4.1 Simulation

In this section we use the simulation study of the double Lomax distribution
to validate the estimation algorithm developed in R. Since we can express the
distribution function of the double Lomax distribution as well as its inverse in
closed form, the inversion method of simulation is straightforward to imple-
ment. We simulated a data set of size 100 from the double Lomax distribution
with parameters (61,01) = (0.5,0.1) and (f2,02) = (1,0.5) by inverting the
distribution function (2.4) in R and then applied the algorithm to obtain the
MLESs of the parameters. Table 1 gives the estimated value of the parameters
using MLE, standard error (SE) and 90% confidence limits (LCL & UCL) for
the parameters.

Table 1: Simulation study - parameter values used for simulation (TRUE),
MLES, standard errors (SE) and 90% confidence limits (LCL & UCL) for the
parameters

TRUE MLE SE LCL UCL

6, 0.5 0.487 0.002 0.48372 0.49028
o1 0.1 0.026 0.001 0.02436 0.02764
0, 1.0 0.950 0.004 0.94344 0.95656
gy 0.5 0.128 0.006 0.11816 0.13784

Replacing the parameters by the estimates we get the MLE of the relia-
bility parameter R as 0.603§. Then the MLE’s are 6; = 0.487, 6, = 0.950,
o1 = 0.026, 5 = 0.128 and R = 0.6035.

Now we estimate R for simulated samples of size n=50, 25 and 15. The
maximum likelihood estimators for the simulated data from double Lomax
distributions are reported in Table 2.

Table 2: MLE of P(X >Y)

n th a1 0 7> R

100 0.487 0.026 0.950 0.128 0.604
50 0.468 0.020 0.873 0.110 0.6027
25 0.523 0.022 0.804 0.094 0.617
15 0.484 0.022 1.163 0.087 0.556

9 Analysis of the Roberts data

In this section, we apply the double Lomax distribution to IQ score data set
from Roberts (1988). The Roberts IQQ data gives the Otis IQ scores for 87
white males and 52 non-white males hired by a large insurance company in
1971. We now let X represent the score for whites and let Y represent the
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scores for non-whites. We now assume that X and Y have independent double
Lomax distribution to estimate the probability that the IQ score for a white
employee is greater than the IQ score for a non-white employee. The two
data sets are analyzed using the double Lomax distribution and the estimates
are given Table 3 and Table 4. Then we calculate the maximum likelihood
estimate for P(X > Y).

Table 3: MLEs, standard errors (SE) and 90% confidence limits (LCL &
UCL) for the parameters
MLE SE LCL UCL

6; 103.000 0.021 102.966 103.034
g1 3.988 0.915 2.487 5.489

Table 4: MLEs, standard errors (SE) and 90% confidence limits (LCL &
UCL) for the parameters
MLE SE LCL UCL

6, 112.001 0.017 111.973 112.029
gy 4.447 0.784 3.161 5.733

Replacing the parameters by the estimates we get the MLE of the reliability
parameter R as 0.6097/.\ Then the MLE’s are 6, = 103, #, = 112.001, 0, =
3.988, g5 = 4.447 and R = 0.6097.

6 Summary

P(X > Y) is of greater interest than just in reliability since it provides a
general measure of the difference between two populations and has applications
in many areas. One of the interesting application is the relationship between
the stress-strength models and the quality control concept, such as process
capability indices. We are planning to consider the problem of hypothesis
testing and interval estimation of the reliability parameter in a stress-strength
model involving two-parameter double Lomax distributions based on the novel
concept of generalized p-value and generalized confidence limits. The practical
applications of the stress-strength reliability no means confined to engineering
or to military problems but also to medical statistics and other areas.
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