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Abstract. Nonparametric inference is becoming more popular because of its wide applicability and
computational facilities. Vardi [The Annals of Statistics, S10, 2, 616 – 620] has considered nonparametric
estimation of the distribution function in the presence of length biased additional information. In this
paper we consider a similar problem when additional information is on parallel system of two identi-
cal independent units, each having a common cumulative distribution function F . The nonparametric
maximum likelihood estimator (NPMLE) of F , not necessarily continuous, is obtained and based on
extensive simulations some of its properties are discussed.

1. Introduction

Let X1, X2, . . . , Xm be m independent identically distributed (iid) random variables with a common
cumulative distribution function (cdf ) F , not necessarily continuous. Consider the problem of estimation
of F in the presence of n additional observations Y1, Y2, . . . , Yn. These additional observations need not
have the same cdf F , but a cdf G, which is a functional of F . This type of additional information may be
available in many situations, similar to the following.

A manufacturer is interested to assess the quality of the units produced, say based on the life length X.
For the purpose he may conduct an experiment on m units yielding observations X1, X2, . . . , Xm. Suppose
these units are used in a system as a subsystem of two components. The service station maintains n records
Y1, Y2, . . . , Yn on the life times of parallel subsystems. Thus the problem of interest is to estimate F based
on m iid observations having cdf F and n iid observations having cdf G = F 2.

In the following section we obtain the nonparametric maximum likelihood estimator (NPMLE) of F in
the absence and the presence of ties in the combined data. Illustrative examples are also given for both these
cases. MATLAB programs have been developed to obtain the estimator and different norms, these can
be obtained on request from the authors. In section 4, the performance of the estimators has been studied
based on extensive simulations followed by conclusion section. The simulated results (Table and Graphs)
are given in Appendix.
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2. The Maximum Likelihood Estimators of F

Let X = (X1, X2, . . . , Xm) be m iid observations with cdf F and Y = (Y1, Y2, . . . , Yn) be n iid observa-
tions independent of Xi’s having cdf F 2. Let t1 < t2 < · · · < th be h ordered observations from combined
sample. Let ξi and ηi be multiplicity (number) of X ′s and Y ′s at ti respectively, for i = 1, 2, . . . , h. Let
t = (t1, t2, . . . , th), ξ = (ξ1, ξ2, . . . , ξh) and η = (η1, η2, . . . , ηh). The combined data X ∪ Y is likelihood
equivalent to (ξ, η, t). Of course, one may suppress either ξ or η, but for notational convenience we shall
retain both of them. The likelihood function L(F : ξ, η, t) is given by

L(F : ξ, η, t) =

h∏
i=1

{dF (ti)}ξi{dG(ti)}ηi =

h∏
i=1

{dF (ti)}ξi{2F (ti)dF (ti)}ηi .

To find generalized NPMLE of F , it is enough to find a probability distribution p = (p1, p2, . . . , ph) that
maximizes L(F : ξ, η, t), where pi = dF(ti) indicates the jump of the cdf at ti for i = 1, 2, . . . , h. For

further details one may refer to Scholz [2]. It is to be noted that
∑h
j=1 pj = 1. Following Vardi [3], the

above likelihood function L(F : ξ, η, t) becomes

L(F : ξ, η, t) =

h∏
i=1

pi
ξi

2

 i∑
j=1

pj

 pi


ηi

e
−λ
(∑h

j=1 pj−1
)

= 2n
h∏
i=1

pi
(ξi+ηi)

 i∑
j=1

pj

ηi

e
−λ
(∑h

j=1 pj−1
)

(1)

where λ is the Lagrange’s multiplier.
For convenience in subsection 2.1, we consider the case of no ties in the combined data and as its

generalization in subsection 2.2 we consider the possibility of ties.

2.1. Data without ties

In this case ξi + ηi = 1 and h = m + n. Let ηi = 1 for i = k1, k2, . . . , kn. That is ki’s are the positions
of Y − observations in the ordered combined data, for i = 1, 2, . . . , n. Hence, from (1) the log-likelihood
function l is given by

l = n log 2 +

h∑
i=1

log pi +

n∑
i=1

ηki log

 ki∑
j=1

pj

−λ
 h∑
j=1

pj − 1

.
Case 2.1.1 (ηh = 0, that is kn < h): Differentiating l with respect to (w.r.t.) p1, p2, . . . , ph, λ and

equating to zero, we have the following n+ 1 sets of equations:

1

pi
+

1∑k1
j=1 pj

+
1∑k2
j=1 pj

+ · · ·+ 1∑kn
j=1 pj

= λ, for i = 1, 2, . . . , k1, (A1)

1

pi
+

1∑k2
j=1 pj

+
1∑k3
j=1 pj

+ · · ·+ 1∑kn
j=1 pj

= λ, for i = k1 + 1, k1 + 2, . . . , k2, (A2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1

pi
+

1∑kn
j=1 pj

= λ, for i = kn−1 + 1, kn−1 + 2, . . . , kn, (An)

1

pi
= λ, for i = kn + 1, kn + 2, . . . , h, (An+1)

h∑
j=1

pj = 1.
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Note that (A1) is a set of k1 equations formed by differentiating l w.r.t. p1, p2, . . . , pk1 and in these
equations only the first term changes. Hence by subtracting uth equation from the vth in the set of (A1)
equations, we will have pu = pv, for 1 ≤ u < v ≤ k1. Let p1 = p2 = · · · = pk1 = q1 (say). In general, we
have

pkj−1+1 = pkj−1+2 = · · · = pkj = qj (say) (2)

for j = 1, 2, . . . , n+ 1 with the convention that k0 = 0 and kn+1 = h.

By rewriting the above (n + 1) sets of equations in terms of q1, q2, . . . , qn+1, from the set of equations
(A1) we will have

1

q1
+

1

k1q1
+

1

k1q1 + (k2 − k1)q2
+ · · ·+ 1

k1q1 + (k2 − k1)q2 + · · ·+ (kn − kn−1)qn
= λ. (B1)

Similarly, from the set of equations (A2), . . . (An+1), we will have

1

q2
+

1

k1q1 + (k2 − k1)q2
+ · · ·+ 1

k1q1 + (k2 − k1)q2 + · · ·+ (kn − kn−1)qn
= λ, (B2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1

qn
+

1

k1q1 + (k2 − k1)q2 + · · ·+ (kn − kn−1)qn
= λ, (Bn)

1

qn+1
= λ. (Bn+1)

By subtracting (B2) from (B1) we will have 1
q1

+ 1
k1q1

= 1
q2

. That is, k1q1 = (k1 + 1)q2. By subtracting

(B3) from (B2) we will have 1
q2

+ 1
k1q1+(k2−k1)q2 = 1

q3
. That is, (k2 + 1)q2 = (k2 + 2)q3 . In general, we have

the recursive relation

(kr + (r − 1))qr = (kr + r)qr+1, for r = 1, 2, . . . , n. (3)

By using (3) we have q2 = k1
k1+1q1 , q3 = k1

k1+1
k2+1
k2+2q1, q4 = k1

k1+1
k2+1
k2+2

k3+2
k3+3q1 and so on. In general,

qr+1 =
k1

k1 + 1

k2 + 1

k2 + 2
. . .

kr + r − 1

kr + r
q1, for r = 1, 2, . . . , n. (4)

However, as
∑h
j=1 pj = 1, we have k1q1 + (k2 − k1)q2 + · · ·+ (kn − kn−1)qn + (h− kn)qn+1 = 1. That is,

k1q1 +

n∑
r=2

(kr − kr−1)

r−1∏
j=1

(kj + j − 1)

(kj + j)
q1 + (h− kn)

n∏
j=1

(kj + j − 1)

(kj + j)
q1 = 1

gives,

q1
−1 = k1 +

n∑
r=2

(kr − kr−1)

r−1∏
j=1

(kj + j − 1)

(kj + j)
+ (h− kn)

n∏
j=1

(kj + j − 1)

(kj + j)
. (5)

Now by using (5) and (4), one can obtain q1, q2, . . . , qn+1. Hence obtain p̂1, p̂2, . . . , p̂h from (2).

Case 2.1.2 (ηh = 1, that is kn = h): In this case there shall not be the last term (
∑kn
j=1 pj)

−1 in the
system of equations (A1) to (An) and hence there shall not be qn+1.
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2.2. Data with ties

Let r and s be be the number of distinct X − values and Y − values, respectively. Let δi = ξi + ηi
for i = 1, 2, . . . , h and δ = (δ1, δ2, . . . , δh). In this case δi ≥ 1 and h ≤ r + s ≤ m + n. Let ηi ≥ 1 for
i = k1, k2, . . . , ks and ηi = 0 otherwise. For convention let k0 = 0 and ks+1 = h. Note that, ki’s are
the positions of Y − observations in the ordered combined data, for i = 1, 2, . . . , s. Hence, from (1) the
log-likelihood function l is given by

l = n log 2 +

h∑
i=1

δi log pi +

s∑
i=1

ηki log

 ki∑
j=1

pj

−λ
 h∑
j=1

pj − 1

.
Case 2.2.1 (ηh = 0, that is ks < h): Differentiating l w.r.t. p1, p2, . . . , ph, λ and equating to zero, we

have the following s+ 1 sets of equations:

δi
pi

+
ηk1∑k1
j=1 pj

+
ηk2∑k2
j=1 pj

+ · · ·+ ηks∑ks
j=1 pj

= λ, for i = 1, 2, . . . , k1 (C1)

δi
pi

+
ηk2∑k2
j=1 pj

+
ηk3∑k3
j=1 pj

+ · · ·+ ηks∑ks
j=1 pj

= λ, for i = k1 + 1, k1 + 2, . . . , k2, (C2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
δi
pi

+
ηks∑ ks

j=1

pj = λ, for i = ks−1 + 1, ks−1 + 2, . . . , ks, (Cs)

δi
pi

= λ, for i = ks + 1, ks + 2, . . . , h, (Cs+1)

h∑
j=1

pj = 1.

Note that in the above set (C1) of k1 equations is formed by differentiating l w.r.t. p1, p2, . . . , pk1 and in
these only the first term changes.

Let

1

Qc
= λ−

s∑
l=c

{
ηkl∑kl
j=1 pj

}
for c = 1, 2, . . . , s+ 1.

The above sets of equations (C1), (C2), . . . , (Cs+1) can be rewritten as:

pi = δiQc for i = kc−1 + 1, kc−1 + 2, . . . , kc and c = 1, 2, . . . , s+ 1. (6)

Hence,
∑h
j=1 pj = 1 implies that,

∑k1
j=1 δjQ1 +

∑k2
j=k1+1 δjQ2 + · · ·+

∑h
j=ks+1 δjQs+1 = 1. That is,

s+1∑
r=1

TrQr = 1, where Tr =

kr∑
j=kr−1+1

δj for r = 1, 2, . . . , s+ 1. (7)

Now, from the definition of Q′is, we have 1
Q1

+
ηk1

T1Q1
= 1

Q2
. That is, Q2 = T1

T1+ηk1
Q1. Similarly, 1

Q2
+

ηk2∑2
j=1 TjQj

= 1
Q3
. That is, Q3 =

∑2
j=1 TjQj + ηk1

(∑2
j=1 TjQj +

∑2
j=1 ηkj

)−1
Q2. In general, we have the

following recursive relations:

Qj = Hj−1Qj−1 for j = 2, 3, . . . , s+ 1. (8)
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where

Hj−1 =

∑j−1
i=1

Tj +
∑j−2
i=1

ηkj∑j−1
i=1

Tj +
∑j−1
i=1

ηkj
for j = 2, 3, . . . , s+ 1. (9)

Hence,

Qj =

j−1∏
i=1

HiQ1 for j = 2, 3, . . . , s+ 1. (10)

From (7) and (10), we have

s+1∑
j=1

Tj

j−1∏
i=1

HiQ1 = 1

with the convention that
∏0
i=1

Hi = 1. Hence,

Q1 =


s+1∑
j=1

Tj

j−1∏
i=1

Hi


−1

. (11)

Thus, Q′js can be obtained from (11) and (10) for j = 1, 2, 3, . . . , s + 1. Hence obtain p̂′is from (6) for
i = 1, 2, 3, . . . , h.

Case 2.2.2 (ηh > 0, that is ks = h): In this case there shall not be the last term ηks

(∑ks
j=1 pj

)−1
in

the system of equations (C1) to (Cs) and hence there shall not be Qs+1.
In either of the above cases, the generalized NPMLE of F is given by

F (M)
m,n (t) =

∑
ti≤t

p̂i, (12)

where, for i = 1, 2, . . . , h; p̂′is are solutions of p′is obtained as described in the respective cases.

2.3. Illustrations

In this section we illustrate methods of obtaining NPMLE developed in the above sub sections. Ex-
amples 1 and 2 are for data without ties and Examples 3 and 4 are for data with ties. In the first two
examples we just indicate the order of the observations while for the others we consider the exact values of
the observations.

Example 1. X-observation is the largest in a combined data: Let m = 4, n = 3 (h = 7), x and y be
the observations on X and Y respectively. Suppose the observations in the combined sample have the order
xy xxy y x. Here k1 = 2, k2 = 5 and k3 = 6. Then from (2) we get p1 = p2 = q1; p3 = p4 = p5 = q2; p6 = q3
and p7 = q4. From (4) we have q2 = k1

k1+1q1 = 2
3q1; q3 = k1

k1+1
k2+1
k2+2q1 = 4

7q1; q4 = k1
k1+1

k2+1
k2+2

k3+2
k3+3q1 = 32

63q1.

From (5) we have q1 = 63
320 . Thus p̂1 = p̂2 = 63

320 ; p̂3 = p̂4 = p̂5 = 42
320 ; p̂6 = 36

320 ; p̂6 = 32
320 . Now for the

specified values of x and y , the generalized NPMLE of F can be obtained from (12).

Example 2. Y -observation is the largest in a combined data : Let m = 4, n = 3 (h = 7) and the
observations in the combined sample have the order x y x y x x y. Hence k1 = 2, k2 = 4 and k3 = 7.
Then from (2) p1 = p2 = q1; p3 = p4 = q2; p5 = p6 = p7 = q3. From (4) we have q2 = k1

k1+1q1 = 2
3q1;

q3 = k1
k1+1

k2+1
k2+2q1 = 5

9q1. From (5) we have q1 = 1
5 . Thus p̂1 = p̂2 = 1

5 ; p̂3 = p̂4 = 2
15 ; p̂5 = p̂6 = p̂7 = 1

9 . For
the specified values of x and y, the generalized NPMLE of F is given by (12).

Example 3. Y -observation is not the largest in a combined data: Let X = (0.3, 0.5, 0.7, 1.3, 1.5, 1.5, 2.5,
3.5, 3.5, 4.0, 6.0), Y = (0.3, 0.35, 0.5, 0.5, 0.9, 1.9, 5.0, 5.0). Distinct observations in a combined sample are
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t = (0.3, 0.35, 0.5, 0.7, 0.9, 1.3, 1.5, 1.9, 2.5, 3.5, 4.0, 5.0, 6.0). Observe that Y -observation is not the largest in
a combined data that is, ηh = 0.

Here, m = 11, n = 8, r = 9, s = 6, h = 13, ξ = (1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1), η = (1, 1, 2, 0, 1, 0, 0, 1, 0, 0, 0,
2, 0), and δ = (2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1), ηi > 0 for i = 1, 2, 3, 5, 8, 12 and ηi = 0 otherwise. Hence k1 =
1, k2 = 2, k3 = 3, k4 = 5, k5 = 8, k6 = 12. From (7), T1 = 2, T2 = 1, T3 = 3, T4 = 2, T5 = 4, T6 = 6, T7 = 1.
From (9), H1 = 2/3, H2 = 4/5, H3 = 4/5, H4 = 12/13, H5 = 17/18 and H6 = 12/13. Hence, from
(11) Q1 = 4225/39168 and from (8), Q2 = 4225/58752, Q3 = 845/1468, Q4 = 169/3672, Q5 = 13/306,
Q6 = 221/5508, Q7 = 1/27. From (6), we have, p̂1 = 4225/19584, p̂2 = 4225/58752, p̂3 = 845/4896, p̂4 =
169/3672, p̂5 = 169/3672, p̂6 = 13/306, p̂7 = 13/153, p̂8 = 13/306, p̂9 = 221/5508, p̂10 = 221/2754, p̂11 =
221/5508, p̂12 = 221/2754, and p̂13 = 1/27. Using these p̂′is the generalized NPMLE of F can be obtained
from (12).

Example 4. Y -observation is the largest in a combined data: Let X = (0.5, 1.3, 1.3, 2.0, 2.5, 2.5, 2.5, 3.0,
3.0), Y = (0.7, 1.5, 1.5, 2.5, 2.5, 3.5, 3.5, 3.5). Distinct observations in a combined sample are t = (0.5, 0.7,
1.3, 1.5, 2.0, 2.5, 3.0, 3.5). Observe that Y − observation is largest in a combined data, that is ηh > 0.

Here, m = 9, n = 8, r = 5, s = 4, h = 8, ξ = (1, 0, 2, 0, 1, 3, 2, 0), η = (0, 1, 0, 2, 0, 2, 0, 3) and δ =
(1, 1, 2, 2, 1, 5, 2, 3), ηi > 0 for i = 2, 4, 6, 8 and ηi = 0 otherwise. Hence k1 = 2, k2 = 4, k3 = 6, k4 = 8.
From (7), T1 = 2, T2 = 4, T3 = 6, T4 = 5. From (9), H1 = 2/3, H2 = 7/9, H3 = 15/17, H4 = 22/25.
Hence, from (11) Q1 = 153/1540 and from (8), Q2 = 51/770, Q3 = 119/2310, Q4 = 1/22. From (6), we
have, p̂1 = 153/1540, p̂2 = 153/1540, p̂3 = 51/385, p̂4 = 51/385, p̂5 = 119/2310, p̂6 = 119/462, p̂7 = 1/11,
p̂8 = 3/22. Using these p̂′is the generalized NPMLE of F can be obtained from (12).

Figure 1: (a) When true F is C(0, 1). (b) When true F is given by (13). FTRUE : True cdf ; FNPMLE : NPMLE given by
(12) and FEmpX : Empirical cdf based on X-observations only.

3. Simulation Study

In this section we carry out simulations to study the role of the additional information and the conver-
gence behavior of the estimator. Data without ties case is simulated by considering F as standard Cauchy
distribution (C(0, 1)) functions. Data with ties case is simulated by considering following F :

F (x) = 0.8
(
1− e−x

)
+ 0.2

0.7

[x]∑
y=0

0.3y

 , if 0 ≤ x <∞, (13)

a mixture of standard exponential and geometric distribution with p = 0.7. We evaluate the performance
of the proposed estimator given by (12), for different values of m and n. For each (m,n), 1000 simulated
samples are considered. In Appendix I the values of the simulated norms between true F and its NPMLE
are tabulated together with the corresponding three dimensional graphs and their contours.
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Figure 1(a) and Figure 1(b) are based on random samples of sizes m = 20 and n = 10. The proposed
estimator given by (12) is closer to the true cdf as compared to the empirical based only on X−observations
which is given by Fm(t) =

∑m
i=1

I[Xi≤t], where IA is an indicator function.
From Table 1 and Figures 2 and 3, it is evident that the NPMLE tends to the true distribution function

as (m,n) increases. Though convergence of NPMLE in m is faster than the convergence in n, by using the
additional information from the n observations we get better estimator.

The three dimensional 3D plots of the simulated Sup norm, L1 norm and L2 norm and their respective
contour plots for the Cauchy distributions are shown in Figure 2. Similar plots for mixture of distributions
(13) are shown by Figure 3.

4. Conclusion

In this paper we have obtained generalized maximum likelihood estimator of the distribution function
F based on m random variables having cdf F and n additional observations from F 2. The estimator being
maximum likelihood, it possesses desirable statistical properties like consistency, asymptotic unbiasedness,
etc. By considering the Sup, L1 and L2 norms and using extensive simulations we have studied the impact
of sample sizes on the estimator in both the cases - data without ties and data with ties.

Appendix I

Table 1: Simulated Norms between NPMLE and true cdf for different values of sample sizes (m,n). Simulation size is equal
to 1000.
Sample Size Sample Size True Distribution

from F from G
C(0, 1) Mixture given by (13)

m n Sup−Norm L1 −Norm L2 −Norm Sup−Norm L1 −Norm L2 −Norm
10 10 0.182328 0.992403 0.082706 0.177112 0.233927 0.021778
10 20 0.151484 0.841741 0.058263 0.146982 0.188603 0.014011
10 30 0.134779 0.754840 0.047609 0.127621 0.161099 0.010047
10 40 0.122947 0.694246 0.040366 0.114543 0.143258 0.007952
10 50 0.113558 0.648138 0.035350 0.105508 0.130604 0.006491
20 10 0.147843 0.792732 0.054235 0.140721 0.196792 0.014580
20 20 0.128372 0.698536 0.041763 0.122859 0.167500 0.010554
20 30 0.116469 0.638206 0.035094 0.110252 0.147704 0.008108
20 40 0.107144 0.592818 0.030263 0.100927 0.133055 0.006590
20 50 0.100804 0.559910 0.027079 0.094099 0.123064 0.005564
30 10 0.128707 0.692245 0.041738 0.121585 0.174449 0.011267
30 20 0.114224 0.624466 0.033219 0.108590 0.152220 0.008580
30 30 0.105217 0.575528 0.028486 0.099427 0.136382 0.006838
30 40 0.097722 0.537413 0.024812 0.092106 0.124525 0.005716
30 50 0.092556 0.510504 0.022390 0.086390 0.116148 0.004912
40 10 0.114683 0.621877 0.033556 0.109148 0.158130 0.009057
40 20 0.103789 0.572591 0.027922 0.099309 0.140770 0.007232
40 30 0.096578 0.532785 0.024364 0.092123 0.128186 0.005979
40 40 0.090734 0.500413 0.021509 0.085987 0.118401 0.005128
40 50 0.086244 0.477652 0.019600 0.081419 0.111175 0.004483
50 10 0.104742 0.568222 0.027834 0.099012 0.145317 0.007575
50 20 0.096387 0.528001 0.023879 0.090947 0.131731 0.006277
50 30 0.090497 0.497184 0.021337 0.085635 0.120959 0.005274
50 40 0.085467 0.469176 0.019022 0.080614 0.112413 0.004592
50 50 0.081445 0.449827 0.017488 0.076709 0.106284 0.004071
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Figure 2: (a), (b), (c) 3-D Plots of [(50-m), (50-n), norms]. Simulations are from C(0, 1). (d), (e), (f) Contour Plot of [(50-m),
(50-n)], norms]. Simulations are from C(0, 1).



Patil P.Y., Rattihalli R.N., Moeng S.R.T. / ProbStat Forum, Volume 04, October 2011, Pages 89–97 97

Figure 3: (a), (b), (c) 3-D Plots of [(50-m), (50-n), norms]. Simulations are from (13). (d), (e), (f) Contour Plot of [(50-m),
(50-n)], norms]. Simulations are from (13).
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