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1 Introduction

In classical statistics the problem of variance estimation is solved by consider-
ing emperical variance. But even for this widely used statistics it is complicated
to calculate its own variance. Now to calculate the variance of an estimate for
the variance of deviations from a polynomial regression function is much more
difficult. Nevertheless it is possible to solve this problem if observations are
made at integer-valued points. The problem of estimation of deviation be-
tween observations and a regression function has its origin from an analysis of
time series of overground air dynamics in connection with the global climate
warming phenomenon.

Here this problem is discussed when the regression function is a polyno-
mial of integer-valued argument and is solved by a special algorithm which
is realized without estimating the regression coefficients. In the first step an
analogue of emperical variance is considered so that it is possible to calculate
its own variance. In the second step, for the regression function, represented
by a polynomial of integer-valued argument, a special recurrence procedure is
constructed which transforms random observations on the polynomial into a
sequence of i.i.d r.vs. Then it is possible to use the results in the first step.
The algorithm can be generalized into a multidimensional setup easily in which
case estimation of variance is replaced by estimation of covariance matrix. This
generalization has applications in mathematical geodesy.
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In the next two sections we consider a modified estimate of variance and
apply it to the context of deviations from a polynomial regression function.
In section 4 the multidimensional case is discussed. In all considered cases
accuracy formulas for variances of suggested estimations are obtained.

2 Modified estimation of variance

Suppose that x1, x2, . . . is the sequence of independent and identically dis-
tributed (i.i.d) random variables (r.v) with the common distribution function
F (t). Denote

Ex1 =

∫ ∞

−∞
tdF (t) = a,

V ar x1 =

∫ ∞

−∞
t2dF (t)− a2 = E(x1 − Ex1)

2 = b,

and assume an absolute convergence of integrals in the mathematical expecta-
tion a and the variance b definitions. Usual estimates of a, b are the empirical
expectation and the empirical variance (see Rozanov, 1971, p.318):

ân =
1

n

n∑
i=1

xi, b̂n =
1

n− 1

n∑
i=1

(xi − ân)2,

which are unbiased. The empirical expectation ân has the variance V ar ân =
b/n. But a calculation of the variance of b̂n is sufficiently complicated proce-
dure. So in this section we consider the following unbiased estimate of b for
which a calculation of its variance is apparent.

Introduce i.i.d r.v’s z1 = x2−x1, z2 = x4−x3, . . . , satisfying the equalities

Ez1 = 0, V ar z1 = 2V ar x1 = 2b. (2.1)

Using r.v’s x1, . . . , x2n define the estimate b′n of b by the formulas:

b′n =
1

2n

n∑
i=1

z2
i .

For an arbitrary r.v u define u = u − Eu, then b = Ex2
1, denote d = Ex2

1

2
.

From the equalities (2.1) obtain:

Eb′n = b, N = 2n, V ar b′n =
d+ 2b2

N
. (2.2)

Here N is the total volume of a sample from the random sequence x1, x2, . . . ,
which is necessary to obtain the estimate b′n.
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Assume now that i.i.d r.v’s x1, x2, . . . have normal distribution then b′n is
the likelihood estimate for the sequence z1, . . . , zn. In an accordance with well
known formulas (see Orlov, 2004, p.110) for moments of normal distribution
and from (2.2) we obtain

V ar b′n =
4b2

N
. (2.3)

3 Variance of deviations from polynomial regression
function with integer-valued argument

Suppose that the random sequence {y1,0, y2,0, . . .} satisfies the equalities

yi,0 = Pm(i) + εi,0, i = 1, . . . ,

where

Pm(i) =
m∑

j=0

ijpm,j

is the polynomial of the degree m, ε1,0, ε2,0, . . . are i.i.d.r.v‘s satisfying the
equalities

Eε1,0 = 0, V ar ε1,0 = Eε2
1,0 = β0, Eε2

1,0

2
= f0.

Define recurrently the random sequences

{y1,1, y2,1, . . .}, {y1,2, y2,2, . . .}, . . . , {y1,m, y2,m, . . .}

as follows
yi,k+1 = y2i,k − y2i−1,k, 1 ≤ i, k = 0, . . . ,m− 1.

By the definition

yi,k+1 = Pm−k−1(i) + εi,k+1, εi,k+1 = ε2i,k − ε2i−1,k,

Pm−k−1(i) = Pm−k(2i)− Pm−k(2i− 1), 1 ≤ i, k = 0, . . . ,m− 1.

Using the induction by k prove that Pm−k−1(i) is the polynomial of the degree
(m−k−1) of i. Indeed, using the binomial theorem and the equality ar− br =
(a − b)(ar−1 + ar−2b + . . . + br−1), which is true for arbitrary natural number
r, obtain

Pm−k−1(i) = Pm−k(2i)−Pm−k(2i− 1) =
m−k∑
j=0

(2i)jpm−k,j −
m−k∑
j=0

(2i− 1)jpm−k,j =

=
m−k∑
j=1

pm−k,j((2i)
j − (2i− 1)j) =

m−k∑
j=1

pm−k,j

j−1∑
t=0

(2i)t(2i− 1)j−1−t.
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Then from the binomial theorem it is easy to see that the function Pm−k−1(i)
may be represented as the polynomial of the degree (m − k − 1) of integer
argument i :

Pm−k−1(i) =
m−k−1∑

j=0

pm−k−1,ji
j.

So Eεi,k+1 = 0, V ar ε1,k+1 = βk+1 = 2βk,

Eε2
1,k+1

2
= fk+1 = 2fk + 4β2

k = 2k+1f0 + 4
k∑

i=0

2k−iβ2
i = 2k+1f0 + 4β2

0

k∑
i=0

2k+i =

= 2k+1f0 + 4β2
02k(2k+1 − 1) = 2k+1(f0 + 2β2

0(2k+1 − 1))

and consequently

βm = 2mβ0, fm = 2m(f0 + 2β2
0(2m − 1)), m ≥ 1.

Define now xi = ym,i, i ≥ 1, b = βm, d = fm and construct by the sample
x1, . . . , x2n the estimate b′n,m = b′n/2

m, of β0 : Eb′n,m = β0,

V ar b′n,m =
d+ 2b2

22m+1n
=
fm + 2β2

m

22m+1n
=

2m(f0 + 2β2
0(2m − 1)) + 22m+1β2

0

22m+1n

=
f0 + β2

0(2m+2 − 2)

2m+1n
.

If i.i.d r.v’s εi,0, i = 1, . . . , have normal d.f. then f0 = 2β2
0 and so

V ar b′n,m =
2β2

0

n
.

To construct the estimate b′n,m it is necessary to have the sample y1,0, . . . , yN,0,
consisting of N = 2m+1n members.

4 Modified empirical covariances

Consider i.i.d random vectors

Z = (z1, . . . , zm), Z1 = (z11, . . . , z1m), Z2 = (z21, . . . , z2m), . . . .

Without loss of generality suppose that Ez1 = . . . = Ezm = 0. Random vectors
Z,Z1, Z2, . . . have common multidimensional distribution. These vectors are
defined by i.i.d random vectors (e1, . . . , em), (e11, . . . , e1m), (e21, . . . , e2m), . . . ,
as follows

zj =
m∑

t=1

ajtet, zij =
m∑

t=1

ajteit, i ≥ 1, 1 ≤ j ≤ m.
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The random vector (e1, . . . , em) consists of i.i.d random components with zero
mathematical expectation, single variance and finite fourth moment µ, the
matrix ||aj,t||mj,t=1 consists of real numbers. The covariance cov(zt, zs) = c(t, s)
satisfies the equality

c(t, s) =
m∑

k=1

atkask.

An unbiased estimate of the covariance c(t, s) is

ĉn(t, s) =
1

n

n∑
i=1

zitzis.

The estimate ĉn(t, s) has the variance

V ar ĉn(t, s) =
1

n
Dztzs,

where

V ar ztzs = V ar
m∑

j,k=1

atjaskejek = b(t, s)− c2(t, s),

b(t, s) = E

[
m∑

j=1

m∑
k=1

atjaskejek

]2

=
m∑

j=1

m∑
k=1

m∑
r=1

m∑
l=1

atjatraskaslEejerekel.

From the random vector (e1, . . . , em) definition obtain that Eejerekel 6= 0 in
one of the following four cases:
a) j = r = k = l, Eejerekel = µ, b) j = k 6= r = l, Eejerekel = 1,
c) j = r 6= k = l, Eejerekel = 1, d) j = l 6= k = r, Eejerekel = 1. So

b(t, s) = µ

m∑
j=1

a2
tja

2
sj +

∑
1≤j,r≤m, j 6=r

atjatrasjasr +
∑

1≤j,k≤m, j 6=k

a2
tja

2
sk+

+
∑

1≤j,k≤m, j 6=k

atjatkaskasj.

Then

V ar ĉn(t, s) =
(µ− 3)d(t, s) + c2(t, s) + c(t, t)c(s, s)

n
,

d(t, s) =
m∑

j=1

a2
tja

2
sj ≤ c(t, t)c(s, s).

If the components of the random vector (e1, . . . , em) have normal distribution
then µ = 3 and so

V ar ĉn(t, s) =
c2(t, s) + c(t, t)c(s, s)

n
.
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Remark 4.1 A suggested technique of a covariance estimate and a calcu-
lation of its variance by means of previous section formulas may be generalized
to deviations of a multidimensional regression function which is a polynomial
function of integer multidimensional argument.
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